Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 190: 110064, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838230

RESUMO

Astilbin (ASB), a dihydroflavonol glycoside, is widely found in a variety of plants and in functional foods and acts as a powerful antioxidant. The aim of this study was to investigate the underlying mechanisms involved in the antagonistic effects of ASB on cadmium (Cd)-induced necroptosis in chicken peripheral blood lymphocytes. Peripheral blood lymphocytes were aseptically collected from Roman white hens and then randomly divided into five groups: the control group was incubated without additional reagents, while the other groups were incubated with Cd, ASB, a combination of Cd and ASB, and 0.1% DMSO. After a 24 h treatment, cell samples were collected. The results showed that some morphological changes consistent with necroptosis were observed in the Cd-treated groups, suggesting the occurrence of necroptosis. Simultaneously, antioxidant activity markers (CAT, SOD, GSH, GSH-px, and T-AOC) decreased and indicators of oxidative stress (MDA, iNOS, NO, H2O2, ·OH and ROS) increased. The production of ROS induced the activation of the PI3K/Akt signaling pathway, as the expression levels of PI3K, Akt and PDK1 were significantly elevated. Additionally, the expression levels of RIPK3, RIPK1, MLKL, TAK1, TAB2 and TAB3 were increased and that of Caspase-8 was decreased, which could cause the necroptosis. However, the most important our results was that ASB supplements remarkably attenuated the Cd-induced effects. We conclude that the Cd treatment promoted an imbalance of the antioxidant status and activated the PI3K/Akt pathway, leading to necroptosis in chicken peripheral blood lymphocytes, and that ASB was able to partially ameliorate the effect of Cd-induced necroptosis.


Assuntos
Cádmio/toxicidade , Flavonóis/farmacologia , Necroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Cádmio/metabolismo , Galinhas/metabolismo , Feminino , Linfócitos/efeitos dos fármacos , Linfócitos/enzimologia , Linfócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Food Funct ; 11(7): 6467-6475, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32618989

RESUMO

Selenium (Se) is an essential trace element and its deficiency can lead to immune dysfunction. Many studies have investigated the immune damage caused by Se deficiency in chickens, but its mechanism still needs to be explored. In this study, we fed 1-day-old Hyline male chickens with Se deficient diets (the Se content was 0.008 mg kg-1 of diet) and a basal diet (the Se content was 0.15 mg kg-1 of diet). The spleen was collected at the sixth week and used for subsequent experiments. The pathological analysis showed that Se deficiency leads to the destruction of the normal nuclear structure of the spleen cell, and we can observe obvious chromatin condensation and nuclear debris. We constructed a transcriptome database and analyzed the abundance of various genes in the spleen by transcriptome sequence. The analysis of differentially expressed genes (DEGS) showed significant changes in 337 genes, including 210 up-regulations and 127 down-regulations after feeding Se deficient diets. Se deficiency can significantly change oxidative stress and inflammatory response genes in chicken spleen. This study confirmed that Se deficiency increased the IL-2 levels, whereas it down-regulated IL-17, IFN-γ and Foxp3, which indicates that the immune dysfunction of the spleen and Th1/Th2 is imbalanced. We also found that Se deficiency down-regulated some related genes for endoplasmic reticulum Ca2+ transport, leading to endoplasmic reticulum stress (ERS). Moreover, we determined that Se deficiency triggered the low expression of DUSP1/NF-κB. In summary, our results indicate that Se deficiency can inhibit the spleen immune function of chickens by regulating the DUSP1/NF-κB pathway and ERS, leading to spleen damage in chickens. Based on transcriptomics research, our results will help further study the harmful effects of Se deficiency.


Assuntos
Galinhas , Fosfatase 1 de Especificidade Dupla/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Doenças das Aves Domésticas/etiologia , Selênio/deficiência , Esplenopatias/imunologia , Animais , Fosfatase 1 de Especificidade Dupla/genética , Estresse do Retículo Endoplasmático/genética , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica , Inflamação/genética , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Baço/imunologia , Baço/ultraestrutura , Esplenopatias/genética , Esplenopatias/patologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA