Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 697, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044138

RESUMO

BACKGROUND: In recent years, global climate change in tandem with increased human activity has resulted in habitat degradation or the migration of rare medicinal plants, potentially impacting the quality of medicinal herbs. Astragalus membranaceus var. mongholicus is a valuable bulk medicinal material in Northwest China. As the demand for this medicinal herb continues to increase in both domestic and international markets, ensuring the sustainable development of high-quality Astragali Radix is important. In this study, the maximum entropy (Maxent) model was applied, thereby incorporating 136 distribution records, along with 39 environmental factors of A. membranaceus var. mongholicus, to assess the quality zonation and potential distribution of this species in China under climate change. RESULTS: The results showed that the elevation, annual mean temperature, precipitation of wettest month, solar radiation in June, and mean temperature of warmest quarter were the critical environmental factors influencing the accumulation of astragaloside IV and Astragalus polysaccharide in A. membranaceus var. mongholicus. Among the twelve main environmental variables, annual mean temperature, elevation, precipitation of the wettest month, and solar radiation in November were the four most important factors influencing the distribution of A. membranaceus var. mongholicus. In addition, ecological niche modelling revealed that highly suitable habitats were mainly located in central and western Gansu, eastern Qinghai, northern Shaanxi, southern Ningxia, central Inner Mongolia, central Shanxi, and northern Hebei. However, the future projections under climate change suggested a contraction of these suitable areas, shifting towards northeastern high-latitude and high-elevation mountains. CONCLUSIONS: The findings provide essential insights for developing adaptive strategies for A. membranaceus var. mongholicus cultivation in response to climate change and can inform future research on this species. By considering the identified environmental factors and the potential impacts of the predicted climate changes, we can visualize the regional distribution of high-quality Radix Astragali and develop conservation strategies to protect and restore its suitable habitats.


Assuntos
Astragalus propinquus , Mudança Climática , Triterpenos , China , Triterpenos/análise , Cromatografia Líquida de Alta Pressão , Saponinas/análise , Plantas Medicinais/química , Meio Ambiente , Temperatura , Polissacarídeos/análise
2.
Int J Biol Macromol ; 265(Pt 1): 130907, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492707

RESUMO

Traditional hot water reflux extraction, ultrasonic-water extraction (UW), ultrasonic-natural deep eutectic solvent (NADES) extraction (U-NADES), ultrasonic-water and enzyme extraction (U-W-E) and ultrasonic-NADES and enzyme extraction (U-NADES-E) are employed for the extraction of Rhizoma et Radix Notopterygii polysaccharides (RNP), in which, the U-NADES-E has being proved as the most effective method. Response Surface Methodology (RSM) was utilized to optimize the conditions for U-NADES-E method. Using the optimal extraction conditions, the yield of RNP can be enhanced by nearly two-fold in comparison to the traditional extraction method, achieving a yield of 7.38 %, with a mere 30-min treatment and low ultrasonic power at 240 W. The RNP's composition included Rhamnose, Arabinose, Galactose, Glucose and Galacturonic Acid by high-performance anion-exchange chromatography. The polysaccharides from two different species of Rhizoma et Radix Notopterygii have also been characterized and identified. Network pharmacology and molecular docking predict that RNP may exert its effects in vivo through binding to PPARA, ACE and REN proteins, thereby potentially impacting diabetes outcomes. This study proposes a new, efficient, energy-saving and environmentally-friendly method for the extraction of RNP.


Assuntos
Apiaceae , Simulação de Acoplamento Molecular , Apiaceae/química , Rizoma/química , Solventes , Água/análise , Polissacarídeos/química
3.
Front Plant Sci ; 15: 1376362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708396

RESUMO

Introduction: Codonopsis pilosula is widely sought-after in China as a substitute for the more expensive ginseng. Continuous cropping of C. pilosula supports a vibrant health-supplement industry but requires significant inputs of fertilizers which increase production costs and degrade the environment. Methods: Here, three environmentally-friendly natural fertilizers, including biochar, bacterial fertilizer, and vermicompost, were used at different concentrations (undiluted, diluted 10 times, diluted 50 times) to determine their efficacy in seed germination and growth physiology of C. pilosula in continuous cropping. Results: The results showed that biochar, bacterial fertilizer, and vermicompost with different concentrations of leachate could all increase the germination rate, germination potential and germination index of C. pilosula seeds treated with inter-root soil leachate of continuous C. pilosula; increase the activity of antioxidant enzymes (superoxide dismutase and peroxidase) in C. pilosula seedlings under the stress of inter-root soil leachate of continuous C. pilosula, reduce the over-accumulation of malondialdehyde (MDA) content, and increase the resistance of C. pilosula seedlings. After transplanting, superoxide dismutase (SOD) activity increased by an average of 16.1%. Peroxidase (POD) levels showed an average increase of 16.4%. Additionally, there was a significant reduction in the MDA content, with an average decrease of 50%, and the content of osmotic-regulating substances (free proline content and soluble protein content) exhibited a significant increase. Discussion: In conclusion, biochar, bacterial manure, and vermicompost have the potential to overcome the challenges of extensive fertilizer use in continuous cropping of C. pilosula.

4.
Front Pharmacol ; 15: 1366556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746010

RESUMO

Codonopsis radix is the dried root of C. pilosula (Franch.) Nannf., C. pilosula Nannf. var. modesta (Nannf.) L. T. Shen, or C. tangshen Oliv., constitutes a botanical medicine with a profound historical lineage. It encompasses an array of bioactive constituents, including polyacetylenes, phenylpropanoids, alkaloids, triterpenoids, and polysaccharides, conferring upon it substantial medicinal and edible values. Consequently, it has garnered widespread attention from numerous scholars. In recent years, driven by advancements in modern traditional Chinese medicine, considerable strides have been taken in exploring resources utilization, traditional processing, quality evaluation and polysaccharide research of Codonopsis radix. However, there is a lack of systematic and comprehensive reporting on these research results. This paper provides a summary of recent advances in Codonopsis research, identifies existing issues in Codonopsis studies, and offers insights into future research directions. The aim is to provide insights and literature support for forthcoming investigations into Codonopsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA