RESUMO
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM). HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective ß1-AR antagonist, CGP 20712. However, application of ß1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates ß1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
RESUMO
INTRODUCTION: Complex spikes (CSs) activity of cerebellar Purkinje cells plays critical roles in motor coordination and motor learning by transferring information to cerebellar cortex, which is an accessible and useful model for neurophysiological investigation. Etomidate is an ultrashort-acting nonbarbiturate intravenous anesthetic, which inhibits the spontaneous activity of cerebellar Purkinje cells through activation of GABAA and glycine receptors in vivo in mice. However, the effect of etomidate on the spontaneous CSs activity of cerebellar Purkinje cells in living mouse is not clear. METHODS: We here investigated the effects of etomidate on spontaneous CSs activity of cerebellar Purkinje cell in urethane-anesthetized mice by electrophysiology recording technique and pharmacological methods. RESULTS: Our results showed that cerebellar surface perfusion of etomidate significantly depressed the activity of spontaneous CSs, which exhibited decreases in the number of spikelets and the area under curve (AUC) of the CSs. The etomidate-produced inhibition of CSs activity was persisted in the presence of GABAA and glycine receptors antagonists. However, application of cannabinoid 1 (CB1) receptor antagonist, AM-251, completely blocked the etomidate-induced inhibition of CSs. Furthermore, application of the CB1 receptor agonist, WIN55212-2, induced a decrease of CSs. Moreover, in the presence of a specific protein kinase A (PKA) inhibitor, KT5720, etomidate failed to produce decreases in the spikelets number and the AUC of the spontaneous CSs. CONCLUSION: These results indicate that cerebellar surface application of etomidate facilitates CB1 receptor activity resulting in a depression of spontaneous CSs activity of Purkinje cells via PKA signaling pathway in mouse cerebellar cortex. Our present results suggest that the etomidate administration may impair the function of cerebellar cortical neuronal circuitry by inhibition of the climbing fiber - Purkinje cells synaptic transmission through activation of CB1 receptors in vivo in mice.
Assuntos
Canabinoides , Etomidato , Animais , Camundongos , Células de Purkinje , Etomidato/farmacologia , Receptores de Glicina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Anestésicos Intravenosos/farmacologia , Canabinoides/farmacologiaRESUMO
BACKGROUND: Corticotropin-releasing factor (CRF) is the major neuromodulator orchestrating the stress response, and is secreted by neurons in various regions of the brain. Cerebellar CRF is released by afferents from inferior olivary neurons and other brainstem nuclei in response to stressful challenges, and contributes to modulation of synaptic plasticity and motor learning behavior via its receptors. We recently found that CRF modulates facial stimulation-evoked molecular layer interneuron-Purkinje cell (MLI-PC) synaptic transmission via CRF type 1 receptor (CRF-R1) in vivo in mice, suggesting that CRF modulates sensory stimulation-evoked MLI-PC synaptic plasticity. However, the mechanism of how CRF modulates MLI-PC synaptic plasticity is unclear. We investigated the effect of CRF on facial stimulation-evoked MLI-PC long-term depression (LTD) in urethane-anesthetized mice by cell-attached recording technique and pharmacological methods. RESULTS: Facial stimulation at 1 Hz induced LTD of MLI-PC synaptic transmission under control conditions, but not in the presence of CRF (100 nM). The CRF-abolished MLI-PC LTD was restored by application of a selective CRF-R1 antagonist, BMS-763,534 (200 nM), but it was not restored by application of a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Blocking cannabinoid type 1 (CB1) receptor abolished the facial stimulation-induced MLI-PC LTD, and revealed a CRF-triggered MLI-PC long-term potentiation (LTP) via CRF-R1. Notably, either inhibition of protein kinase C (PKC) with chelerythrine (5 µM) or depletion of intracellular Ca2+ with cyclopiazonic acid (100 µM), completely prevented CRF-triggered MLI-PC LTP in mouse cerebellar cortex in vivo. CONCLUSIONS: The present results indicated that CRF blocked sensory stimulation-induced opioid-dependent MLI-PC LTD by triggering MLI-PC LTP through CRF-R1/PKC and intracellular Ca2+ signaling pathway in mouse cerebellar cortex. These results suggest that activation of CRF-R1 opposes opioid-mediated cerebellar MLI-PC plasticity in vivo in mice.
Assuntos
Hormônio Liberador da Corticotropina , Células de Purkinje , Analgésicos Opioides/farmacologia , Animais , Córtex Cerebelar/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Interneurônios/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Células de Purkinje/metabolismo , Receptor CB1 de Canabinoide/metabolismoRESUMO
Dendritic spine development is crucial for the establishment of excitatory synaptic connectivity and functional neural circuits. Alterations in spine morphology and density have been associated with multiple neurological disorders. Autism candidate gene disconnected-interacting protein homolog 2 A (DIP2A) is known to be involved in acetylated coenzyme A (Ac-CoA) synthesis and is primarily expressed in the brain regions with abundant pyramidal neurons. However, the role of DIP2A in the brain remains largely unknown. In this study, we found that deletion of Dip2a in mice induced defects in spine morphogenesis along with thin postsynaptic density (PSD), and reduced synaptic transmission of pyramidal neurons. We further identified that DIP2A interacted with cortactin, an activity-dependent spine remodeling protein. The binding activity of DIP2A-PXXP motifs (P, proline; X, any residue) with the cortactin-Src homology 3 (SH3) domain was critical for maintaining the level of acetylated cortactin. Furthermore, Dip2a knockout (KO) mice exhibited autism-like behaviors, including excessive repetitive behaviors and defects in social novelty. Importantly, acetylation mimetic cortactin restored the impaired synaptic transmission and ameliorated repetitive behaviors in these mice. Altogether, our findings establish an initial link between DIP2A gene variations in autism spectrum disorder (ASD) and highlight the contribution of synaptic protein acetylation to synaptic processing.
Assuntos
Acetilcoenzima A/genética , Transtorno do Espectro Autista/genética , Cortactina/genética , Espinhas Dendríticas/metabolismo , Morfogênese/genética , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Acetilcoenzima A/deficiência , Acetilação , Motivos de Aminoácidos , Animais , Animais Recém-Nascidos , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Sítios de Ligação , Cortactina/metabolismo , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Transmissão SinápticaRESUMO
Cerebellar Purkinje cells (PCs) exhibit two types of discharge activities: simple spike (SS) and complex spike (CS). Previous studies found that noradrenaline (NA) can inhibit CS and bidirectionally regulate SS, but the enhancement of NA on SS is overwhelmed by the strong inhibition of excitatory molecular layer interneurons. However, the mechanism underlying the effect of NA on SS discharge frequency is not clear. Therefore, in the present study, we examined the mechanism underlying the increasing effect of NA on SS firing of PC in mouse cerebellar cortex in vivo and in cerebellar slice by cell-attached and whole-cell recording technique and pharmacological methods. GABAA receptor was blocked by 100 µmol/L picrotoxin in the whole process. In vivo results showed that NA significantly reduced the number of spikelets of spontaneous CS and enhanced the discharge frequency of SS, but did not affect the discharge frequency of CS. In vitro experiments showed that NA reduced the number of CS spikelets and after hyperpolarization potential (AHP) induced by electrical stimulation, and increased the discharge frequency of SS. NA also reduced the amplitude of excitatory postsynaptic current (EPSC) of parallel fiber (PF)-PC and significantly increased the paired-pulse ratio (PPR). Application of yohimbine, an antagonist of α2-adrenergic receptor (AR), completely eliminated the enhancing effect of NA on SS. The α2-AR agonist, UK14304, also increased the frequency of SS. The ß-AR blocker, propranolol, did not affect the effects of NA on PC. These results suggest that in the absence of GABAA receptors, NA could attenuate the synaptic transmission of climbing fiber (CF)-PC via activating α2-AR, inhibit CS activity and reduce AHP, thus enhancing the SS discharge frequency of PC. This result suggests that NA neurons of locus coeruleus can finely regulate PC signal output by regulating CF-PC synaptic transmission.
Assuntos
Norepinefrina , Células de Purkinje , Potenciais de Ação/fisiologia , Animais , Córtex Cerebelar/metabolismo , Cerebelo/metabolismo , Camundongos , Norepinefrina/farmacologia , Células de Purkinje/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de GABA-A/metabolismoRESUMO
Fentanyl as a synthetic opioid works by binding to the mu-opioid receptor (MOR) in brain areas to generate analgesia, sedation and reward related behaviors. As we know, cerebellum is not only involved in sensory perception, motor coordination, motor learning and precise control of autonomous movement, but also important for the mood regulation, cognition, learning and memory. Previous studies have shown that functional MORs are widely distributed in the cerebellum, and the role of MOR activation in cerebellum has not been reported. The aim of the present study was to investigate the effects of fentanyl on air-puff stimulus-evoked field potential response in the cerebellar molecular layer using in vivo electrophysiology in mice. The results showed that perfusion of 5 µmol/L fentanyl on the cerebellar surface significantly inhibited the amplitude, half width and area under the curve (AUC) of sensory stimulation-evoked inhibitory response P1 in the molecular layer. The half-inhibitory concentration (IC50) of the fentanyl-induced suppression of P1 amplitude was 4.21 µmol/L. The selective MOR antagonist CTOP abolished fentanyl-induced inhibitory responses in the molecular layer. However, application of CTOP alone increased the amplitude and AUC of P1. Notably, fentanyl significantly inhibited the tactile stimulation-evoked response of molecular layer interneurons (MLIs) and the spontaneous firing of MLIs. The results suggest that fentanyl attenuates air-puff stimulus-evoked field potential response in the cerebellar molecular layer via binding to MOR to restrain the spontaneous and evoked firing of MLIs.
Assuntos
Cerebelo , Fentanila , Animais , Potenciais Evocados , Fentanila/farmacologia , Interneurônios , Camundongos , Estimulação FísicaRESUMO
Etomidate (ET) produces sedation by binding on the γ-aminobutyric acid type A (GABAA) receptors. We previously found that ET inhibited cerebellar Purkinje cells activity via both GABAA and glycine receptors in vivo in mice, suggesting that ET modulated sensory information synaptic transmission in cerebellar cortex. In this study, we investigated the effect of ET on the sensory stimulation-evoked responses in the cerebellar granule layer (GL) in urethane-anesthetized mice, using electrophysiological and pharmacological methods. Our results showed that cerebellar surface perfusion of ET (100 µmol/L) significantly decreased amplitude and area under the curve (AUC) of the sensory stimulation-evoked excitatory component (N1) in the cerebellar GL. Application of GABAA receptor antagonist, SR95531 (20 µmol/L) significantly attenuated, but not abolished the ET-induced decrease in amplitude and AUC of facial stimulation-evoked responses. However, application of a mixture of SR95531 (20 µmol/L) and cannabinoid 1 receptor (CB1) antagonist, AM-251 (5 µmol/L), completely blocked the ET-induced decrease in amplitude and AUC of facial stimulation-evoked responses. Furthermore, application of the CB1 receptor agonist, WIN55212-2, induced a decrease in amplitude and AUC of N1 in the absence of GABAA receptors activity, as well occluded the ET-induced depression of N1. Moreover, the ET-induced changes in amplitude and AUC of N1 in absence of GABAA receptors activity were abolished by a specific protein kinase A (PKA) inhibitor, KT5720. These results indicate that ET facilitates CB1 receptors in the absence of GABAA receptors activity, resulting in a depression of the sensory stimulation-evoked synaptic transmission via PKA signaling pathway in mouse cerebellar GL.
Assuntos
Cerebelo/citologia , Etomidato/farmacologia , Potenciais Evocados/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Camundongos , Neurônios/fisiologia , Estimulação Física , Receptor CB1 de Canabinoide/fisiologia , Receptores de GABA-A/fisiologia , Transmissão Sináptica , TatoRESUMO
Etomidate is an imidazole, nonbarbiturate hypnotic agent that is increasingly used in procedural sedation. However, the effects of etomidate on the spontaneous activity of cerebellar Purkinje cells (PCs) in living mouse have not been fully understood. In this study, we investigated the effects of etomidate on the spontaneous simple spike (SS) activity of PCs in urethane-anesthetized mice by cell-attached recording and pharmacological methods. Cerebellar surface application of etomidate (50 µmol\L) reduced the SS firing rate in a concentration-dependent manner (IC50: 43.4 µmol\L). Application of either a γ-aminobutyric acid type A (GABAA) receptor antagonist, SR95531 (20 µmol\L) or a glycine receptor antagonist strychnine (10 µmol\L) significantly attenuated but not abolished the etomidate-induced decrease in PC SS firing rate. However, co-application of SR95531 (20 µmol\L) and strychnine (10 µmol\L) abolished the etomidate-induced decrease in PC SS firing rate. Moreover, intraperitoneal injection of etomidate (3 mg/kg body weight) also induced a significant depression in PC SS firing rate, which was blocked by the co-application of SR95531 and strychnine on the cerebellar surface. These results indicate that both GABAA and glycine receptors are involved in the etomidate-induced decrease in PC SS firing rate in vivo in mice.
Assuntos
Etomidato/farmacologia , Células de Purkinje/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/fisiologia , Feminino , Antagonistas GABAérgicos/farmacologia , Hipnóticos e Sedativos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células de Purkinje/fisiologia , Piridazinas/farmacologia , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Estricnina/farmacologiaRESUMO
Propofol is a global central nervous system depressant that affects information processing in the central nervous system. However, the effects of propofol on sensory information processing in the cerebellar cortical molecular layer are unknown. In this study, we examined the effects of propofol on the dynamics of sensory stimulation-evoked responses in the cerebellar molecular layer in urethane-anesthetized mice, using electrophysiological and pharmacological methods. Our results showed that cerebellar surface perfusion of propofol (10-1,000 µmol/l) significantly decreased amplitude and area under the curve (AUC) of the sensory stimulation-evoked inhibitory component (P1) but increased the rise time and decay time of P1. In contrast, administration of propofol significantly enhanced the sensory stimulation-evoked excitatory component (N1), which exhibited increases in amplitude and AUC, as well as increases in rise time and decay time. By blocking the GABAA receptor activity, propofol failed to increase the amplitude and the AUC of the excitatory postsynaptic component (N2) of PCs. Our present results suggest that propofol modulates the dynamic properties of the sensory information processing in the cerebellar molecular layer through the modulation of GABAA receptors activity in the adult mouse.
Assuntos
Córtex Cerebelar/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Percepção do Tato/fisiologia , Animais , Córtex Cerebelar/metabolismo , Córtex Cerebelar/fisiopatologia , Relação Dose-Resposta a Droga , Antagonistas de Receptores de GABA-A/farmacologia , Hipnóticos e Sedativos/administração & dosagem , Camundongos Endogâmicos ICR , Propofol/administração & dosagem , Receptores de GABA-A/metabolismo , Técnicas EstereotáxicasRESUMO
Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 µM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.
Assuntos
Potenciais Evocados/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Células de Purkinje/efeitos dos fármacos , Piridazinas/farmacologia , Animais , Estimulação Elétrica , Face/inervação , Camundongos , Camundongos Endogâmicos ICRRESUMO
Cerebellar parallel fiber-Purkinje cell (PF-PC) long-term synaptic plasticity is important for the formation and stability of cerebellar neuronal circuits, and provides substrates for motor learning and memory. We previously reported both presynaptic long-term potentiation (LTP) and long-term depression (LTD) in cerebellar PF-PC synapses in vitro. However, the expression and mechanisms of cerebellar PF-PC synaptic plasticity in the cerebellar cortex in vivo are poorly understood. In the present study, we studied the properties of 4 Hz stimulation-induced PF-PC presynaptic long-term plasticity using in vivo the whole-cell patch-clamp recording technique and pharmacological methods in urethane-anesthetised mice. Our results demonstrated that 4 Hz PF stimulation induced presynaptic LTD of PF-PC synaptic transmission in the intact cerebellar cortex in living mice. The PF-PC presynaptic LTD was attenuated by either the N-methyl-D-aspartate receptor antagonist, D-aminophosphonovaleric acid, or the group 1 metabotropic glutamate receptor antagonist, JNJ16259685, and was abolished by combined D-aminophosphonovaleric acid and JNJ16259685, but enhanced by inhibition of nitric oxide synthase. Blockade of cannabinoid type 1 receptor activity abolished the PF-PC LTD and revealed a presynaptic PF-PC LTP. These data indicate that both endocannabinoids and nitric oxide synthase are involved in the 4 Hz stimulation-induced PF-PC presynaptic plasticity, but the endocannabinoid-dependent PF-PC presynaptic LTD masked the nitric oxide-mediated PF-PC presynaptic LTP in the cerebellar cortex in urethane-anesthetised mice.
Assuntos
Córtex Cerebelar/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células de Purkinje/fisiologia , Anestésicos Intravenosos/farmacologia , Animais , Córtex Cerebelar/efeitos dos fármacos , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos Endogâmicos ICR , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Uretana/farmacologiaRESUMO
The mechanism by which α2-adrenergic receptors (ARs) modulate the cerebellar parallel fiber-Purkinje cell (PF-PC) synaptic transmission is unclear. We investigated this issue using electrophysiological and neuropharmacological methods. Six- to eight-week-old ICR mice were used in the study. Under in vivo conditions, PF-PC synaptic transmission was evoked by facial stimulation of ipsilateral whisker pad, and recorded using cell-attached patch from PCs. Under in-vitro conditions, PF-PC synaptic transmission was evoked by electrical stimulation of the molecular layer in cerebellar slices, and was recorded using whole-cell recording from PCs. SR95531 (20 µM) was added to the ACSF during all recordings to prevent GABAA receptor-mediated inhibition. Air-puff stimulation of the ipsilateral whisker pad in-vivo evoked simple spike (eSS) firing of cerebellar PCs. Microapplication of noradrenaline (15 µM) to the molecular layer significantly decreased the numbers and frequency of eSS, an effect abolished by the α2-AR antagonist. Microapplication of an α2-AR agonist, UK14304 (1 µM), significantly decreased the numbers of eSS in PCs, which was abolished by either α2A- or α2B-AR antagonist, but not by α2C-AR antagonist. Under in-vitro conditions, application of UK 14304 significantly decreased the amplitude of PF-PC EPSCs and increased the paired-pulse ratio, which were abolished by either α2A- or α2B-AR antagonist. The present results indicate that activation of presynaptic α2A- and α2B-AR downregulates PF-PC synaptic transmission in mouse cerebellar cortex.
Assuntos
Córtex Cerebelar , Células de Purkinje , Animais , Camundongos , Camundongos Endogâmicos ICR , Cerebelo/fisiologia , Transmissão SinápticaRESUMO
Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.
Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Receptores de N-Metil-D-Aspartato , Transmissão Sináptica , Ácido Valproico , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Valproico/farmacologia , Gravidez , Feminino , Camundongos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transtorno do Espectro Autista/induzido quimicamente , Masculino , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Anticonvulsivantes/farmacologiaRESUMO
Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.
Assuntos
Etomidato , Camundongos , Animais , Etomidato/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica , Anestésicos Intravenosos/farmacologiaRESUMO
Glucagon-like peptide-1 (GLP-1) is mainly secreted by preproglucagon neurons; it plays important roles in modulating neuronal activity and synaptic transmission through its receptors. In the present study, we investigated the effects of GLP-1 on parallel fiber-Purkinje cell (PF-PC) synaptic transmission in mouse cerebellar slices using whole-cell patch-clamp recording and pharmacology methods. In the presence of a γ-aminobutyric acid type A receptor antagonist, bath application of GLP-1 (100 nM) enhanced PF-PC synaptic transmission, with an increased amplitude of evoked excitatory postsynaptic synaptic currents (EPSCs) and a decreased paired-pulse ratio. The GLP-1-induced enhancement of evoked EPSCs was abolished by a selective GLP-1 receptor antagonist, exendin 9-39, as well as by the extracellular application of a specific protein kinase A (PKA) inhibitor, KT5720. In contrast, inhibiting postsynaptic PKA with a protein kinase inhibitor peptide-containing internal solution failed to block the GLP-1-induced enhancement of evoked EPSCs. In the presence of a mixture of gabazine (20 µM) and tetrodotoxin (1 µM), application GLP-1 significantly increased frequency, but not amplitude of miniature EPSCs via PKA signaling pathway. The GLP-1-induced increase in miniature EPSC frequency was blocked by both exendin 9-39 and KT5720. Together, our results indicate that GLP-1 receptor activation enhances glutamate release at PF-PC synapses via the PKA signaling pathway, resulting in enhanced PF-PC synaptic transmission in mice in vitro. These findings suggest that, in living animals, GLP-1 has a critical role in the modulation of cerebellar function by regulating excitatory synaptic transmission at PF-PC synapses.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
The noradrenergic fibers of the locus coeruleus, together with mossy fibers and climbing fibers, comprise the three types of cerebellar afferents that modulate the cerebellar neuronal circuit. We previously demonstrated that noradrenaline (NA) modulated synaptic transmission in the mouse cerebellar cortex via adrenergic receptors (ARs). In the present study, we investigated the effect of NA on facial stimulation-evoked cerebellar molecular layer interneuron (MLI)-Purkinje cell (PC) synaptic transmission in urethane-anesthetized mice using an in vivo cell-attached recording technique and a pharmacological method. MLI-PC synaptic transmission was induced by air-puff stimulation (duration: 60 ms) of the ipsilateral whisker pad, which exhibited positive components (P1 and P2) accompanied by a pause in simple spike activity. Cerebellar molecular layer application of NA (15 µM) decreased the amplitude and area under the curve of P1, and the pause in simple spike activity, but increased the P2/P1 ratio. The NA-induced decrease in P1 amplitude was concentration-dependent, and the half-inhibitory concentration was 10.94 µM. The NA-induced depression of facial stimulation-evoked MLI-PC GABAergic synaptic transmission was completely abolished by blockade of α-ARs or α2-ARs, but not by antagonism of α1-ARs or ß-ARs. Bath application of an α2-AR agonist inhibited MLI-PC synaptic transmission and attenuated the effect of NA on the synaptic response. NA-induced depression of MLI-PC synaptic transmission was completely blocked by a mixture of α2A- and 2B-AR antagonists, and was abolished by inhibition of protein kinase A. In addition, electrical stimulation of the molecular layer evoked MLI-PC GABAergic synaptic transmission in the presence of an AMPA receptor antagonist, which was inhibited by NA through α2-ARs. Our results indicate that NA inhibits MLI-PC GABAergic synaptic transmission by reducing GABA release via an α2-AR/PKA signaling pathway.
Assuntos
Norepinefrina , Células de Purkinje , Animais , Camundongos , Norepinefrina/farmacologia , Transdução de Sinais , Transmissão Sináptica , Interneurônios , Proteínas Quinases Dependentes de AMP CíclicoRESUMO
Glucagon-like peptide-1 (GLP-1) is mainly secreted by preglucagonergic neurons in the nucleus tractus solitarius, which plays critical roles in regulation of neuronal activity in the central nervous system through its receptor. In the cerebellar cortex, GLP-1 receptor is abundantly expressed in the molecular layer, Purkinje cell (PC) layer and granular layer, indicating that GLP-1 may modulate the cerebellar neuronal activity. In this study, we investigated the mechanism by which GLP1 modulates mouse cerebellar PC activity in vitro. After blockade of glutamatergic and GABAergic synaptic transmission in PCs, GLP1 increased the spike firing rate accompanied by depolarization of membrane potential and significantly depressed the after-hyperpolarizing potential and outward rectifying current of spike firing discharges via GLP1 receptors. In the presence of TTX and Ba2+, GLP1 significantly enhanced the hyperpolarized membrane potential-evoked instant current, steady current, tail current (I-tail) and hyperpolarization-activated (IH) current. Application of a selective IH channel antagonist, ZD7288, blocked IH and abolished the effect of GLP1 on PC membrane currents. The GLP1 induced enhancement of membrane currents was also abolished by a selective GLP1 receptor antagonist, exendin-9-39, as well as by protein kinase A (PKA) inhibitors, KT5720 and H89. In addition, immunofluorescence detected GLP1 receptor in the mouse cerebellar cortex, mostly in PCs. These results indicated that GLP1 receptor activation enhanced IH channel activity via PKA signaling, resulting in increased excitability of mouse cerebellar PCs in vitro. The present findings indicate that GLP1 plays a critical role in modulating cerebellar function by regulating the spike firing activity of mouse cerebellar PCs.
RESUMO
Cerebellar Purkinje cells (PCs) play critical roles in motor coordination and motor learning through their simple spike (SS) activity. Previous studies have shown that chronic ethanol exposure (CEE) in adolescents impairs learning, attention, and behavior, at least in part by impairing the activity of cerebellar PCs. In this study, we investigated the effect of CEE on the SS activity in urethane-anesthetized adolescent mice by in vivo electrophysiological recordings and pharmacological methods. Our results showed that the cerebellar PCs in CEE adolescent mice expressed a significant decrease in the frequency and an increase in the coefficient of variation (CV) of SS than control group. Blockade of ɤ-aminobutyric acid A (GABAA) receptor did not change the frequency and CV of SS firing in control group but produced a significant increase in the frequency and a decrease in the CV of SS firing in CEE mice. The CEE-induced decrease in SS firing rate and increase in CV were abolished by application of an N-methyl-D-aspartate (NMDA) receptor blocker, D-APV, but not by anα-amino-3-hydroxy-5-methyl -4-isoxazolepropionic acid (AMPA) receptor antagonist, NBQX. Notably, the spontaneous spike rate of molecular layer interneurons (MLIs) in CEE mice was significantly higher than control group, which was also abolished by application of D-APV. These results indicate that adolescent CEE enhances the spontaneous spike firing rate of MLIs through activation of NMDA receptor, resulting in a depression in the SS activity of cerebellar PCs in vivo in mice.
Assuntos
Potenciais de Ação , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Células de Purkinje/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurogênese , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidoresRESUMO
Nicotine is a psychoactive component of tobacco that plays critical roles in the regulation of neuronal circuit function and neuroplasticity and contributes to the improvement of working memory performance and motor learning function via nicotinic acetylcholine receptors (nAChRs). Under in vivo conditions, nicotine enhances facial stimulation-evoked mossy fiber-granule cell (MF-GrC) synaptic transmission, which suggests that nicotine regulates MF-GrC synaptic plasticity in the mouse cerebellar cortex. In this study, we investigated the effects of nicotine on facial stimulation-induced long-term potentiation (LTP) of MF-GrC synaptic transmission in urethane-anesthetized mice. Our results showed that facial stimulation at 20 Hz induced an MF-GrC LTP in the mouse cerebellar granular layer that was significantly enhanced by the application of nicotine (1 µM). Blockade of α4ß2 nAChRs, but not α7 nAChRs, during delivery of 20 Hz facial stimulation prevented the nicotine-induced facilitation of MF-GrC LTP. Notably, the facial stimulation-induced MF-GrC LTP was abolished by an N-methyl-D-aspartate (NMDA) receptor antagonist, but it was restored by additional application of nicotine during delivery of 20 Hz facial stimulation. Furthermore, antagonism of α4ß2 nAChRs, but not α7 nAChRs, during delivery of 20 Hz facial stimulation prevented nicotine-induced MF-GrC LTP. Moreover, inhibition of nitric oxide synthase (NOS) abolished the facial stimulation-induced MF-GrC LTP, as well as the effect of nicotine on it. Our results indicated that 20 Hz facial stimulation induced MF-GrC LTP via an NMDA receptor/nitric oxide (NO) cascade, but MF-GrC LTP was enhanced by nicotine through the α4ß2 AChR/NO signaling pathway. These results suggest that nicotine-induced facilitation of MF-GrC LTP may play a critical role in the improvement of working memory performance and motor learning function.
RESUMO
Long-term synaptic plasticity in the cerebellar cortex is a possible mechanism for motor learning. Previous studies have demonstrated the induction of mossy fiber-granule cell (MF-GrC) synaptic plasticity under in vitro and in vivo conditions, but the mechanisms underlying sensory stimulation-evoked long-term synaptic plasticity of MF-GrC in living animals are unclear. In this study, we investigated the mechanism of long-term potentiation (LTP) of MF-GrC synaptic transmission in the cerebellum induced by train of facial stimulation at 20 Hz in urethane-anesthetized mice using electrophysiological recording, immunohistochemistry techniques, and pharmacological methods. Blockade of GABAA receptor activity and repetitive facial stimulation at 20 Hz (240 pulses) induced an LTP of MF-GrC synapses in the mouse cerebellar cortical folium Crus II, accompanied with a decrease in paired-pulse ratio (N2/N1). The facial stimulation-induced MF-GrC LTP was abolished by either an N-methyl-D-aspartate (NMDA) receptor blocker, i.e., D-APV, or a specific GluNR2A subunit-containing NMDA receptor antagonist, PEAQX, but was not prevented by selective GluNR2B or GluNR2C/D subunit-containing NMDA receptor blockers. Application of GNE-0723, a selective and brain-penetrant-positive allosteric modulator of GluN2A subunit-containing NMDA receptors, produced an LTP of N1, accompanied with a decrease in N2/N1 ratio, and occluded the 20-Hz facial stimulation-induced MF-GrC LTP. Inhibition of nitric oxide synthesis (NOS) prevented the facial stimulation-induced MF-GrC LTP, while activation of NOS produced an LTP of N1, with a decrease in N2/N1 ratio, and occluded the 20-Hz facial stimulation-induced MF-GrC LTP. In addition, GluN2A-containing NMDA receptor immunoreactivity was observed in the mouse cerebellar granular layer. These results indicate that facial stimulation at 20 Hz induced LTP of MF-GrC synaptic transmission via the GluN2A-containing NMDA receptor/nitric oxide cascade in mice. The results suggest that the sensory stimulation-evoked LTP of MF-GrC synaptic transmission in the granular layer may play a critical role in cerebellar adaptation to native mossy fiber excitatory inputs and motor learning behavior in living animals.