Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(36): 11327-11333, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39197173

RESUMO

Integrated photonic microcavities have demonstrated powerful enhancement of nonlinear effects, but they face a challenge in achieving critical coupling for sufficient use of incident pump power. In this work, we first experimentally demonstrate that highly efficient third-harmonic generation (THG) and detectable second-harmonic generation (SHG) can be produced from high-Q photonic moiré superlattice microcavities, where a critical coupling condition can be achieved via selecting a magic angle. Furthermore, at the magic angle of 13.17°, critical coupling is satisfied, resulting in a normalized THG conversion efficiency of 136%/W2 at a relatively low peak pump power of 6.8 MW/cm2, which is 3 orders of magnitude higher than the best results reported previously. Our work shows the power of photonic moiré superlattices in enhancing nonlinear optical performances through flexible and feasible engineering resonant modes, which can be applied in integrated frequency conversion and generation of quantum light sources.

2.
Nanoscale ; 15(8): 3757-3763, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36787155

RESUMO

Colloidal CdSe/ZnS quantum dots (QDs) exhibit excellent optical properties for wide potential applications in light-emitting diodes, solar concentrators, and single-photon sources. However, the ultra-thin films with low concentration of QDs still encounter inefficient photoluminescence (PL) and poor directionality of radiation, which need to be enhanced using nanophotonics device designs. Here we design and experimentally demonstrate an on-substrate silicon nitride (SiN) photonic crystal (PhC) microcavity encapsulated by a layer of PMMA hosting CdSe/ZnS QDs. The miniaturized bound states in the continuum (BIC) supported by our structures, provide high-Q resonant modes with highly-directional emission patterns. Experimental results show that the BIC mode in the microcavity has a Q-factor up to 7000 owing to the symmetric refractive index distribution along the Z-direction, rendering 8.5-fold enhancement of PL intensity and 8.4-fold acceleration of radiative emission rate. Our work provides a practical way for constructing efficient on-chip surface-emitting light sources on silicon-based integrated photonic devices.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37110899

RESUMO

Although perovskite solar cells have achieved excellent photoelectric conversion efficiencies, there are still some shortcomings, such as defects inside and at the interface as well as energy level dislocation, which may lead to non-radiative recombination and reduce stability. Therefore, in this study, a double electron transport layer (ETL) structure of FTO/TiO2/ZnO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD is investigated and compared with single ETL structures of FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD and FTO/ZnO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD using the SCAPS-1D simulation software, with special attention paid to the defect density in the perovskite active layer, defect density at the interface between the ETL and the perovskite active layer, and temperature. Simulation results reveal that the proposed double ETL structure could effectively reduce the energy level dislocation and inhibit the non-radiative recombination. The increases in the defect density in the perovskite active layer, the defect density at the interface between the ETL and the perovskite active layer, and the temperature all facilitate carrier recombination. Compared with the single ETL structure, the double ETL structure has a higher tolerance for defect density and temperature. The simulation outcomes also confirm the possibility of preparing a stable perovskite solar cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA