Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 164: 112334, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737927

RESUMO

Tartary buckwheat (TB) sprout is a kind of novel nutritional vegetable, but its consumption was limited by low biomass and thin hypocotyl. The tetraploid TB sprouts was considered to be able to solve this issue. However, the nutritional quality of tetraploid TB sprouts and differences between conventional (diploid) and tetraploid TB sprouts remain unclear. In this study, the morphological traits, nutrient compositions and metabolome changes of diploid and tetraploid TB sprouts were analyzed. The water, pigments and minerals contents of TB sprouts increased during sprouting, while the contents of total soluble protein, reducing sugar, cellulose, and total phenol decreased. Compared with diploid sprouts, tetraploid sprouts had higher biomass and thicker hypocotyl. Tetraploid sprouts had higher ash and carotenoid contents, but had lower phenol and flavonoid accumulation. 677 metabolites were identified in TB sprouts by UPLC-MS analysis, including 62 diseases-resistance metabolites and 43 key active ingredients. Some key bioactive metabolites, such as rimonabant, quinapril, 1-deoxynojirimycin and miglitol, were identified. 562 differential expressed metabolites (DEMs) were identified during sprouting with seven accumulation patterns, and five hormones were found to be involved in sprout development. Additionally, 209 DEMs between diploid and tetraploid sprouts were found, and some key bioactive metabolites were induced by chromosome doubling such as mesoridazine, amaralin, atractyloside A, rhamnetin and Qing Hau Sau. This work lays a basis for the development and utilization of TB sprouts and provides evidence for the selection of tetraploid varieties to produce sprouts with high biomass and quality.


Assuntos
Fagopyrum , Fagopyrum/genética , Diploide , Cromatografia Líquida , Tetraploidia , Espectrometria de Massas em Tandem , Metabolômica , Nutrientes
2.
Plant Physiol Biochem ; 196: 647-660, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796235

RESUMO

Tartary buckwheat (Fagopyrum tataricum Garetn.), a dicotyledonous herbaceous crop, has good adaptation to low nitrogen (LN) condition. The plasticity of roots drives the adaption of Tartary buckwheat under LN, but the detailed mechanism behind the response of TB roots to LN remains unclear. In this study, the molecular mechanism of two Tartary buckwheat genotypes' roots with contrasting sensitivity in response to LN was investigated by integrating physiological, transcriptome and whole-genome re-sequencing analysis. LN improved primary and lateral root growth of LN-sensitive genotype, whereas the roots of LN-insensitive genotype showed no response to LN. 2, 661 LN-responsive differentially expressed genes (DEGs) were identified by transcriptome analysis. Of these genes, 17 N transport and assimilation-related and 29 hormone biosynthesis and signaling genes showed response to LN, and they may play important role in Tartary buckwheat root development under LN. The flavonoid biosynthetic genes' expression was improved by LN, and their transcriptional regulations mediated by MYB and bHLH were analyzed. 78 transcription factors, 124 small secreted peptides and 38 receptor-like protein kinases encoding genes involved in LN response. 438 genes were differentially expressed between LN-sensitive and LN-insensitive genotypes by comparing their transcriptome, including 176 LN-responsive DEGs. Furthermore, nine key LN-responsive genes with sequence variation were identified, including FtNRT2.4, FtNPF2.6 and FtMYB1R1. This paper provided useful information on the response and adaptation of Tartary buckwheat root to LN, and the candidate genes for breeding Tartary buckwheat with high N use efficiency were identified.


Assuntos
Fagopyrum , Transcriptoma , Transcriptoma/genética , Fagopyrum/genética , Fagopyrum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas
3.
Front Microbiol ; 14: 1240029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779724

RESUMO

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an important pseudocereal crop with excellent edible, nutritional and medicinal values. However, the yield of Tartary buckwheat (TB) is very low due to old-fashioned cultivation techniques, particularly unreasonable application of nitrogen fertilizer. To improve the understanding on the theories of nitrogen use in TB, the effects of nitrogen application on growth, as well as chemical properties and microbial community of rhizosphere soil were investigated in this study. Nitrogen application could promote the plant height, stem diameter, nitrogen accumulation and yield of TB. The relative abundance and diversity of bacteria and fungi in the rhizosphere soil of TB were improved by nitrogen fertilizer. Nitrogen application increased the abundance of beneficial bacteria such as Lysobacter and Sphingomonas in rhizosphere soil, and decreased the abundance of pathogenic fungi such as Fusarium and Plectosphaerella. The results indicated that nitrogen application changed the distribution of microbial communities in TB rhizosphere soil. Furthermore, the specific enriched or depleted microorganisms in the rhizosphere soil of four TB varieties were analyzed at OTU level. 87 specific nitrogen-responsive genes with sequence variation were identified in four varieties by integrating genomic re-sequencing and transcriptome analysis, and these genes may involve in the recruitment of specific rhizosphere microorganisms in different TB varieties. This study provided new insights into the effects of nitrogen application on TB growth and rhizosphere microbial community, and improved the understanding on the mechanisms of TB root-microbe interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA