Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Langmuir ; 38(17): 5218-5225, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730981

RESUMO

Thermoresponsive self-assembled nanogels were conveniently prepared by cholesterol end-capped poly(N-isopropylacrylamide) (PNIPAM) in water. Both cholesterol end-capped PNIPAMs (telelchelic cholesterol PNIPAM, tCH-PNIPAM) formed flower-like nanogels by the self-assembling of four to five polymer chains with multiple domains of cholesterol in water at 20 °C. Meanwhile, one end-group cholesterol-capped PNIPAM (semitelechelic cholesterol PNIPAM, stCH-PNIPAM) was also formed as a nanogel by the self-assembling of 15-20 polymer chains with 3 to 4 cholesterol domains. The hydrophobic cholesterol domains of tCH-PNIPAM nanogels were maintained above the lower critical solution temperature (LCST) of PNIPAM (>32 °C). Differently, the hydrophobic domains of stCH-PNIPAM were disrupted by cholesterol-free PNIPAM chain ends and formed large mesoglobules above the LCST. These transition controls of hydrophilic end-capped smart polymers may open new methodologies to design thermoresponsive nanosystems.


Assuntos
Temperatura Alta , Água , Resinas Acrílicas , Colesterol/química , Nanogéis , Polímeros/química , Temperatura
2.
Langmuir ; 35(5): 1902-1908, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30142974

RESUMO

The sulfobetaine (SB) moiety, which comprises a quaternary ammonium group linked to a negatively charged sulfonate ester, is known to impart nonfouling properties to interfaces coated with polysulfobetaines or grafted with SB-polymeric brushes. Increasingly, evidence emerges that the SB group is, overall, a better antifouling group than the phosphorylcholine (PC) moiety extensively used in the past. We report here the synthesis of a series of SB-modified chitosans (CH-SB) carrying between 20 and 40 mol % SB per monosaccharide unit. Chitosan (CH) itself is a naturally derived copolymer of glucosamine and N-acetyl-glucosamine linked with a ß-1,4 bond. Analysis by quartz crystal microbalance with dissipation (QCM-D) indicates that CH-SB films (thickness ∼ 20 nm) resist adsorption of bovine serum albumin (BSA) with increasing efficiency as the SB content of the polymer augments (surface coverage ∼ 15 µg cm-2 for films of CH with 40 mol % SB). The cell adhesivity of CH-SB films coated on glass was assessed by determining the spreading dynamics of CT26 cell aggregates. When placed on chitosan films, known to be cell-adhesive, the CT26 cell aggregates spread by forming a cell monolayer around them. The spreading of CT26 cell aggregates on zwitterion-modified chitosans films is thwarted remarkably. In the cases of CH-SB30 and CH-SB40 films, only a few isolated cells escape from the aggregates. The extent of aggregate spreading, quantified based on the theory of liquid wetting, provides a simple in vitro assay of the nonfouling properties of substrates toward specific cell lines. This assay can be adopted to test and compare the fouling characteristics of substrates very different from the chemical viewpoint.


Assuntos
Betaína/análogos & derivados , Quitosana/análogos & derivados , Adsorção/efeitos dos fármacos , Animais , Betaína/síntese química , Betaína/química , Bovinos , Agregação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/síntese química , Camundongos , Soroalbumina Bovina/química
3.
Langmuir ; 30(15): 4333-41, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24694093

RESUMO

A nonionic-cationic diblock copolymer, poly(2-isopropyl-2-oxazoline)60-b-poly((3-acrylamidopropyl)trimethylammonium chloride)17, (PIPOZ60-b-PAMPTMA17), was utilized to electrostatically tether temperature-responsive PIPOZ chains to silica surfaces by physisorption. The effects of polymer concentration, pH, and temperature on adsorption were investigated using quartz crystal microbalance with dissipation monitoring and ellipsometry. The combination of these two techniques allows thorough characterization of the adsorbed layer in terms of surface excess, thickness, and water content. The high affinity of the cationic PAMPTMA17 block to the negatively charged silica surface gives rise to a high affinity adsorption isotherm, leading to (nearly) irreversible adsorption with respect to dilution. An increase in solution pH lowers the affinity of PIPOZ to silica but enhances the adsorption of the cationic block due to increasing silica surface charge density, which leads to higher adsorption of the cationic diblock copolymer. Higher surface excess is also achieved at higher temperatures due to the worsening of the solvent quality of water for the PIPOZ block. Interestingly, a large hysteresis in adsorbed mass and other layer properties was observed when the temperature was cycled from 25 to 45 °C and then back to 25 °C. Possible causes for this temperature hysteresis are discussed.


Assuntos
Polímeros/química , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Dióxido de Silício/química , Propriedades de Superfície , Temperatura
4.
J Biomed Biotechnol ; 2011: 148763, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21274258

RESUMO

50 kDa chitosan was conjugated with folate, a specific tissue-targeting ligand. Nanoparticles such as chitosan-DNA and folate-chitosan-DNA were prepared by coacervation process. The hydrodynamic intravenous injection of nanoparticles was performed in the right posterior paw in normal and arthritic rats. Our results demonstrated that the fluorescence intensity of DsRed detected was 5 to 12 times more in the right soleus muscle and in the right gastro muscle than other tissue sections. ß-galactosidase gene expression with X-gal substrate and folate-chitosan-plasmid nanoparticles showed best coloration in the soleus muscle. Treated arthritic animals also showed a significant decrease in paw swelling and IL-1ß and PGE2 concentration in serum compared to untreated rats. This study demonstrated that a nonviral gene therapeutic approach using hydrodynamic delivery could help transfect more efficiently folate-chitosan-DNA nanoparticles in vitro/in vivo and could decrease inflammation in arthritic rats.


Assuntos
Artrite Experimental/terapia , Quitosana/administração & dosagem , DNA/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/administração & dosagem , Nanopartículas/administração & dosagem , Análise de Variância , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , DNA/genética , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Adjuvante de Freund/administração & dosagem , Histocitoquímica , Humanos , Injeções Intravenosas , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Músculo Esquelético/metabolismo , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Nanopartículas/química , Ratos , Ratos Endogâmicos Lew , Tarso Animal/patologia , Distribuição Tecidual , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
5.
Macromolecules ; 53(13): 5105-5115, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32952216

RESUMO

High-sensitivity differential scanning calorimetry (HS-DSC) thermograms of aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions present a sharp unimodal endotherm that signals the heat-induced dehydration/collapse of the PNIPAM chain. Similarly, α,ω-di-n-octadecyl-PNIPAM (C18-PN-C18) aqueous solutions exhibit a unimodal endotherm. In contrast, aqueous solutions of α,ω-hydrophobically modified PNIPAMs with polycyclic terminal groups, such as pyrenylbutyl (Py-PN-Py), adamantylethyl (Ad-PN-Ad), and azopyridine- (C12-PN-AzPy) moieties, exhibit bimodal thermograms. The origin of the two transitions was probed using microcalorimetry measurements, turbidity tests, variable temperature 1H NMR (VT-NMR) spectroscopy, and 2-dimensional NOESY experiments with solutions of polymers of molar mass (M n) from 5 to 20 kDa and polymer concentrations of 0.1 to 3.0 mg/mL. The analysis outcome led us to conclude that the difference of the thermograms reflects the distinct self-assembly structures of the polymers. C18-PN-C18 assembles in water in the form of flower micelles held together by a core of tightly packed n-C18 chains. In contrast, polymers end-tagged with azopyridine, pyrenylbutyl, or adamantylethyl form a loose core that allows chain ends to escape from the micelles, to reinsert in them, or to dangle in surrounding water. The predominant low temperature (T 1) endotherm, which is insensitive to polymer concentration, corresponds to the dehydration/collapse of PNIPAM chains within the micelles, while the higher temperature (T 2) endotherm is attributed to the dehydration of dangling chains and intermicellar bridges. This study of the two phase transitions of telechelic PNIPAM homopolymer highlights the rich variety of morphologies attainable via responsive hydrophobically modified aqueous polymers and may open the way to a variety of practical applications.

6.
Photochem Photobiol ; 96(4): 805-814, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31907932

RESUMO

The equilibrium structures and optical properties of the photolabile caged luciferin, (7-diethylaminocoumarin-4-yl)methyl caged D-luciferin (DEACM-caged D-luciferin), in aqueous solution were investigated via quantum chemical calculations. The probable conformers of DEACM-caged D-luciferin were determined by potential energy curve scans and structural optimizations. We identified 40 possible conformers of DEACM-caged D-luciferin in water by comparing the Gibbs free energy of the optimized structures. Despite the difference in their structures, the conformers were similar in terms of assignments, oscillator strengths and energies of the three low-lying excited states. From the concentrations of the conformers and their oscillator strengths, we obtained a theoretical UV/Vis spectrum of DEACM-caged D-luciferin that has two main bands of shape nearly identical to the experimental UV/Vis spectrum. The absorption bands with maxima ~ 384 and 339 nm were attributed to the electronic excitations of the caged group and the luciferin moiety, respectively, by analysis of the theoretical UV/Vis spectrum. Furthermore, the analysis showed that DEACM-caged D-luciferin is excited in the caged group only by light of wavelength ranging within 400-430 nm, which is in the long-wavelength tail of the 384 nm band. This should be tested to lower damage upon photocleavage.


Assuntos
Benzotiazóis/química , Cumarínicos/química , Modelos Teóricos , Processos Fotoquímicos , Espectrofotometria Ultravioleta
7.
Macromolecules ; 52(8): 2939-2948, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31496545

RESUMO

A series of azopyridine-terminated poly(N-isopropylacrylamide)s (PNIPAM) (C12-PN-AzPy) (∼5000 < M w < 20 000 g mol-1, polydispersity index 1.25 or less) were prepared by reversible addition-fragmentation chain-transfer polymerization of NIPAM in the presence of a chain-transfer agent that contains an AzPy group and an n-dodecyl chain. In cold water, the polymers form nanoparticles (5.9 nm < R h < 10.9 nm) that were characterized by light scattering (LS), 1H NMR diffusion experiments, and high-resolution transmission electron microscopy. We monitored the pH-dependent photoisomerization of C12-PN-AzPy nanoparticles by steady-state and time-resolved UV-vis absorption spectroscopy. Azopyridine is known to undergo a very fast cis-to-trans thermal relaxation when the azopyridine nitrogen is quaternized or bound to a hydrogen bond donor. The cis-to-trans thermal relaxation of the AzPy chromophore in an acidic nanoparticle suspension is very fast with a half-life τ = 2.3 ms at pH 3.0. It slows down slightly for nanoparticles in neutral water (τ = 0.96 s, pH 7.0), and it is very slow for AzPy-PNIPAM particles in alkaline medium (τ > 3600 s, pH 10). The pH-dependent dynamics of the cis-to-trans dark relaxation, supported by Fourier transform infrared spectroscopy, 1H NMR spectroscopy, and LS analysis, suggest that in acidic medium, the nanoparticles consist of a core of assembled C12 chains surrounded by a shell of hydrated PNIPAM chains with the AzPy+ end groups preferentially located near the particle/water interface. In neutral medium, the shell surrounding the core contains AzPy groups H-bonded to the amide hydrogen of the PNIPAM chain repeat units. At pH 10.0, the amide hydrogen binds preferentially to the hydroxide anions. The AzPy groups reside preferentially in the vicinity of the C12 core of the nanoparticles. The morphology of the nanoparticles results from the competition between the segregation of the hydrophobic and hydrophilic components and weak attractive interactions, such as H-bonds between the AzPy groups and the amide hydrogen of the PNIPAM repeat units.

8.
J Photochem Photobiol B ; 189: 81-86, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30317051

RESUMO

Caged luciferin compounds of firefly luciferins have recently drawn much attention since firefly bioluminescence, in which D-luciferin acts as a substrate, is widely used in noninvasive gene-expression imaging, studies of in vivo cell trafficking, and the detection of enzyme activity. The objectives of this study are the development of new caged luciferins and the quantitative determination of the photophysical parameters of their photo-decomposition. We synthesized 7-(diethylaminocoumarin)-4-(yl)methyl caged D-luciferin (DEACM-caged D-luciferin) and quantitatively characterized its absorption spectrum, bioluminescence, and photoproducts using chiral HPLC chromatography, as a function of light-irradiation time. We observed that 4 min of UV irradiation generated maximum D-luciferin concentrations, which corresponds to 16.2% of the original DEACM-caged-D-luciferin concentration. Moreover, we evaluated not only the rate of photocleavage (0.20/min) from DEACM-caged D-luciferin to luciferin but also the rate of caged-luciferin degradation that did not produce luciferin (0.28/min) and the rate of luciferin decomposition (0.20/min) after exposure to irradiation with a 70 mW/cm2 high-pressure mercury lamp (254-600 nm). The formation rate of L-luciferin via DEACM-caged-D-luciferin photocleavage was smaller by a factor of 1/10 compared with that of D-luciferin. These quantitative measurements and simultaneous evaluations of photocleavage, degradation, and decomposition are the most important and original methodology presented in this study.


Assuntos
Benzotiazóis/análise , Cumarínicos/síntese química , Cumarínicos/química , Cinética , Medições Luminescentes , Rotação Ocular , Fotólise , Estereoisomerismo
9.
ACS Macro Lett ; 4(12): 1362-1365, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35614783

RESUMO

In thin and ultrathin supported films, the conformations of flexible linear polymer chains might be considerably confined, in particular, for film thicknesses smaller than a few times the radius of gyration. For ring polymers in solution or in melt, the radii of gyration are significantly reduced as compared to those of their linear counterparts. We study here the influence of geometrical confinement on the chain conformation of cyclic PNIPAM in silicon-supported films. Measurements are performed by grazing incidence small angle neutron scattering (GISANS). For all films, the component of the radius of gyration parallel to the substrate, Rgc∥, is significantly higher than the unperturbed Rgc determined under theta solvent or melt conditions. We attribute this effect to a preferential selection of stretched PNIPAM ring conformations in thin films and a preferential orientation of macromolecules parallel to the film interfaces with the substrate and air.

10.
Chem Commun (Camb) ; 50(61): 8350-2, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24942471

RESUMO

Telechelic α,ω-di(twin-tailed poly(N-isopropylacrylamides)) form polymersomes in water that increase in size by fusion when the water temperature exceeds the polymers cloud point temperature. Hybrid vesicles form in mixed suspensions of giant phospholipid liposomes and polymersomes by adsorption/fusion, and undergo further transformations, such as fission.


Assuntos
Resinas Acrílicas/química , Lipossomos/química , Bicamadas Lipídicas/química , Tamanho da Partícula , Temperatura , Água/química
11.
Int J Nanomedicine ; 8: 4091-102, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204139

RESUMO

Polyethylenimines (PEIs) are the most efficient synthetic vectors for gene delivery available to date. With its high charge density and strong proton-buffering effect, PEI has an ability to condense DNA and small interfering RNA at physiologic pH. However, the polymer suffers from the disadvantage of high cellular toxicity. To reduce its cellular toxicity, we synthesized linear PEIs by partial hydrolysis of poly(2-ethyl-2-oxazoline). Three linear PEIs with different hydrolysis percentages (30%, 70%, and 96%, respectively) were produced as PEI30, PEI70, and PEI96. PEI30 and PEI96 cannot be considered as suitable transfection agents because of low transfection efficiency (PEI30) or high cellular toxicity (PEI96). PEI70 displayed very weak cell toxicity. The charge density of this polymer (PEI70) was strong enough to condense DNA and small interfering RNA at a physiologic pH of 7.4. Our results also show that PEI70 was highly efficient in DNA delivery and small interfering RNA-mediated knockdown of target genes. Thus, polymers such as PEI70 appear to be very promising vectors for gene delivery.


Assuntos
DNA/farmacocinética , Portadores de Fármacos/farmacologia , Técnicas de Transferência de Genes , Poliaminas/química , Polietilenoimina/química , RNA Interferente Pequeno/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/genética , DNA/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Células HeLa , Humanos , Hidrólise , Tamanho da Partícula , Polimerização , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
Int J Nanomedicine ; 7: 5833-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209368

RESUMO

The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery.


Assuntos
Quitosana/química , Ácido Fólico/química , Inativação Gênica , Nanocápsulas/química , Neoplasias Experimentais/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção/métodos , Linhagem Celular Tumoral , Células HeLa , Humanos , Peso Molecular , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura
13.
ISRN Pharm ; 2012: 369270, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22474605

RESUMO

Nonviral cationic polymers like chitosan can be combined with DNA to protect it from degradation. The chitosan is a biocompatible, biodegradable, nontoxic, and cheap polycationic polymer with low immunogenicity. The objective of this study was to synthesize and then assess different chitosan-DNA nanoparticles and to select the best ones for selective in vitro transfection in human epidermoid carcinoma (KB) cell lines. It revealed that different combinations of molecular weight, the presence or absence of folic acid ligand, and different plasmid DNA sizes can lead to nanoparticles with various diameters and diverse transfection efficiencies. The intracellular trafficking, nuclear uptake, and localization are also studied by confocal microscopy, which confirmed that DNA was delivered to cell nuclei to be expressed.

14.
Biomacromolecules ; 7(11): 3151-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096545

RESUMO

A polymer analogous synthesis involving the reductive amination of phosphorylcholine (PC)-glyceraldehyde with primary amines of deacetylated chitosan (M(w) approximately 57000 g mol(-1)) was used to prepare phosphorylcholine-substituted chitosans (PC-CH) with a degree of substitution (DS) ranging from approximately 11 to approximately 53 mol % PC-substituted glucosamine residues. The PC-CH derivatives were characterized by (1)H NMR spectroscopy, FTIR spectroscopy, and multiangle laser light scattering gel permeation chromatography (MALLS-GPC). The pK(a) of the PC-substituted amine groups (pK(a) approximately 7.20) was determined by (1)H NMR titration. The PC-CH samples (1.0 g L(-1)) were shown to be nontoxic using an MTT assay performed with human KB cells. Aqueous solutions of PC-CH samples (4.0 g L(-1)) of DS >or= 22 mol % PC-substituted glucosamine residues remained clear, independently of pH (4.0 < pH < 11.0). The remarkable water solubility and nontoxicity displayed by the new PC-CH samples open up new opportunities in the design of chitosan-based biomaterials and nanoparticles.


Assuntos
Quitosana/síntese química , Fosforilcolina/química , Acetilação , Sequência de Carboidratos , Quitosana/química , Cromatografia em Gel , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA