Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917488

RESUMO

Deformation monitoring is a powerful tool to understand the formation mechanism of earth fissure hazards, enabling the engineering and planning efforts to be more effective. To assess the evolution characteristics of the Yangshuli earth fissure hazard more completely, terrestrial laser scanning (TLS), a remote sensing technique which is regarded as one of the most promising surveying technologies in geohazard monitoring, was employed to detect the changes to ground surfaces and buildings in small- and large-scales, respectively. Time-series of high-density point clouds were collected through 5 sequential scans from 2014 to 2017 and then pre-processing was performed to filter the noise data of point clouds. A tiny deformation was observed on both the scarp and the walls, based on the local displacement analysis. The relative height differences between the two sides of the scarp increase slowly from 0.169 m to 0.178 m, while no obvious inclining (the maximum tilt reaches just to 0.0023) happens on the two walls, based on tilt measurement. Meanwhile, global displacement analysis indicates that the overall settlement slowly increases for the ground surface, but the regions in the left side of scarp are characterized by a relatively larger vertical displacement than the right. Furthermore, the comparisons of monitoring results on the same measuring line are discussed in this study and TLS monitoring results have an acceptable consistency with the global positioning system (GPS) measurements. The case study shows that the TLS technique can provide an adequate solution in deformation monitoring of earth fissure hazards, with high effectiveness and applicability.

2.
Materials (Basel) ; 16(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903027

RESUMO

Traditional research and development (R&D) on biomedical materials depends heavily on the trial and error process, thereby leading to huge economic and time burden. Most recently, materials genome technology (MGT) has been recognized as an effective approach to addressing this problem. In this paper, the basic concepts involved in the MGT are introduced, and the applications of MGT in the R&D of metallic, inorganic non-metallic, polymeric, and composite biomedical materials are summarized; in view of the existing limitations of MGT for R&D of biomedical materials, potential strategies are proposed on the establishment and management of material databases, the upgrading of high-throughput experimental technology, the construction of data mining prediction platforms, and the training of relevant materials talents. In the end, future trend of MGT for R&D of biomedical materials is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA