Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Apoptosis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853204

RESUMO

TRAF2 and NCK interacting kinase (TNIK), a critical interacting protein kinase, is currently receiving wide attention. TNIK is found in various human body organs and tissues and participates in cell motility, proliferation, and differentiation. On the one hand, its aberrant expression is related to the onset and progression of numerous malignant tumors. On the other hand, TNIK is important in neuronal growth, proliferation, differentiation, and synaptic formation. Thus, the novel therapeutic strategies for targeting TNIK offer a promising direction for cancer, neurological or psychotic disorders. Here, we briefly summarized the biological information of TNIK, reviewed the role and regulatory mechanism in cancer and neuropsychiatric diseases, and introduced the research progress of inhibitors targeting TNIK. Taken together, this review hopes to contribute to the in-depth understanding of the function and regulatory mechanism of TNIK, which is of great significance for revealing the role of TNIK in the occurrence and treatment of diseases.

2.
Biochem Pharmacol ; 221: 116035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301968

RESUMO

In a previous study, we used metabolomic techniques to identify a new metabolite of Danshen Dripping Pills called isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP), which has potential as a drug candidate for cardiovascular diseases. This study aimed to explore the protective effects of IDHP against septic myocardial injury, as well as its molecular mechanism. Wild type or GAS6 knockout mice injured by cecal ligation and puncture (CLP) were used to observe the effect of IDHP. Here, we found that a specific concentration of IDHP (60 mg/kg) significantly increased the survival rate of septic mice to about 75 % at 72 h post CLP, and showed improvements in sepsis score, blood biochemistry parameters, cardiac function, and myocardial tissue damage. Furthermore, IDHP inhibited myocardial oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. Molecularly, we discovered that IDHP treatment reversed the CLP-induced downregulation of GAS6, Axl, and p-AMPK/AMPK expression. In addition, GAS6 knockout reversed the positive effect of IDHP in septic mice, indicated by more severe myocardial tissue damage, oxidative stress, inflammatory response, and mitochondrial dysfunction. GAS6 knockout also resulted in decreased levels of GAS6, Axl, and p-AMPK/AMPK. Taken together, our study provides evidence that IDHP has significant cardioprotective effects against sepsis by regulating the GAS6/Axl-AMPK signaling pathway. This finding has important therapeutic potential for treating sepsis.


Assuntos
Doenças Mitocondriais , Sepse , Infecção dos Ferimentos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Miocárdio , Transdução de Sinais , Camundongos Knockout , Sepse/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA