Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121504, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908155

RESUMO

In the face of escalating urban pluvial floods exacerbated by climate change, conventional roof systems fall short of effectively managing precipitation extremes. This paper introduces a smart predictive solution: the Smart Internal Drainage Roof (SIDR) system, which leverages forecasted data to enhance the mitigation of pluvial floods in Central Business District (CBD) areas. Unlike traditional approaches, SIDRs utilize a synergistic combination of Rule-based Control (RBC) and Model Predictive Control (MPC) algorithms, tailored to optimize the operational efficiency of both grey and green roofs. Within the examined 1.3 km2 area in Beijing, China, SIDRs, covering 11% of the site, decreased total flooded areas by 30%-50% and eliminated 60%-100% of high-risk zones during three actual events. Moreover, SIDRs streamlined outflow processes without extending discharge time and reduced flood duration at a high-risk underpass by more than half. The SIDR's distinct features, including a high control resolution of 5 min, integration with existing waterproofs, and advanced 2D dynamic runoff visualization, position it as a scalable and cost-efficient upgrade in urban flood resilience strategies.

2.
J Environ Manage ; 356: 120600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547823

RESUMO

The 'extreme' emission abatement during the lockdown (from the end of 2019 to the early 2020) provided an experimental period to investigate the corresponding source-specific effects of aerosol. In this study, the variations of source-specific light absorption (babs) and direct radiative effect (DRE) were obtained during and after the lockdown period by using the artificial neural network (ANN) and source apportionment environmental receptor model. The results showed that the babs decreased for all sources during the two periods. The most reductions were observed with ∼90% for traffic-related emissions (during the lockdown) and ∼85% for coal combustion (after the lockdown), respectively. Heightened babs (370 nm) values were obtained for coal and biomass burning during the lockdown, which was attributed to the enhanced atmospheric oxidization capacity. Nevertheless, the variations of babs (880 nm) after the lockdown was mainly due to the weakening of oxidation and reduced emissions of secondary precursors. The present study indicated that the large-scale emission reduction can promote both reductions of babs (370 nm) and DRE (34-68%) during the lockdown. The primary emissions decrease (e.g., Traffic emission) may enhance atmosphere oxidation, increase the ultraviolet wavelength light absorption and DRE efficiencies. The source-specific emission reduction may be contributed to various radiation effects, which is beneficial for the adopting of control strategies.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Carvão Mineral , Aerossóis/análise , Biomassa , Material Particulado/análise , China
3.
Chemistry ; 29(44): e202301266, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37226708

RESUMO

The α-diimine-ligated dimagnesium(I) compound [K(thf)3 ]2 [LMg-MgL] (1, L=[(2,6-iPr2 C6 H3 )NC(Me)]2 2- ) displays diverse reactivities toward carbodiimides (RN=C=NR) with different R substituents. In the reaction of 1 with Me3 SiNCNSiMe3 , one of the easily leaving trimethylsilyl groups is lost to yield the Me3 SiNCN- moiety that either bridges two MgII centers (2) or terminally coordinated (3). In contrast, with the similarly bulky tBuNCNtBu, the carbodiimide inserts into Mg-Mg bond with accompanying C-H activation of a ligand or solvent (products 4 and 5). In the case of dicyclohexyl or diisopropyl carbodiimide, reductive C-C coupling of two RNCNR molecules occurs to form the [C2 (NR)4 ]2- diamido moiety, which bridges two Mg centers, giving complexes [{K(dme)2 }2 LMg(µ-{C2 (NR)4 })MgL] (6, R=Cy; 7, R=iPr) and [L⋅- Mg(µ-{C2 (NR)4 })MgL⋅- ] (8). Most interestingly, upon treating 1 with Me3 SiC≡CSiMe3 , the acetylide complex [K(dme)][LMg(C≡CSiMe3 )(dme)] (9) was prepared, which undergoes a rare "double insertion" with CyNCNCy to afford [K(solv)][K(dme)2 LMg(NCy)2 C-C≡C-C(NCy)2 MgL] (10) containing an acetylenediide-coupled bis(amidinate) ligand that bridges two Mg atoms.

4.
J Environ Manage ; 348: 119209, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37837758

RESUMO

Improving hydrodynamic conditions is considered an effective method for facilitating the eutrophication management. However, the effect of hydrodynamic conditions on algal growth has rarely been quantified. In this work, a eutrophication model was developed and flow velocity was introduced into the algae growth kinetic formula to simulate the dynamics of algae growth in a drinking water source reservoir in East China. Based on the previous research and model calibration, the flow velocity-influence function f(v) and its parameters were determined. Accordingly, the optimal flow velocity for the dominant algae growth and critical flow velocity for algal growth inhibition were presented to be 0.055 m/s and 0.200 m/s for the study reservoir. Modeled results considering f(v) agreed with better with observations and reproduced the algal overgrowth process more accurately. The spatial-temporal differences in chlorophyll a (Chl a) concentration distribution during the algal proliferation period were analyzed on the basis of simulation results, which corroborated the significant influence of flow velocity on algal growth. The established model was applied to investigate the effect of improvement in hydrodynamic conditions on algal bloom control in the reservoir, and the scenario simulation of the additional sluice was conducted. Results showed that the additional sluice operation inhibited algal overgrowth effectively, resulting in an average decrease of 24.8%, 3.3%, 43.0%, and 37.5% in modeled Chl a concentration upstream north, upstream south, midstream and downstream, respectively. The established model might serve as a practical tool for eutrophication management in the study reservoir and other water bodies with similar hydrological characteristics and geographical features.


Assuntos
Água Potável , Eutrofização , Clorofila A/análise , China , Monitoramento Ambiental/métodos , Fósforo/análise
5.
J Environ Manage ; 327: 116821, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442450

RESUMO

In order to investigate the variations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) chemical components responding to the pollution control strategy and their effect on light extinction (bext) in the Guanzhong Plain (GZP), the comparisons of urban atmospheric chemical components during the heating seasons were extensively conducted for three years. The average concentration of PM2.5 decreased significantly from 117.9 ± 57.3 µg m-3 in the heating season 1 (HS1) to 53.5 ± 31.3 µg m-3 in the heating season 3 (HS3), which implied that the effective strategies were implemented in recent years. The greatest contribution to PM2.5 (∼30%) was from Organic matter (OM). The heightened contributions of the secondary inorganic ions (SNA, including NO3-, SO42-, and NH4+) to PM2.5 were observed with the values of 34% (HS1), 41% (HS2), and 42% (HS3), respectively. The increased percentages of NO3- contributions indicated that the emission of NOx should be received special attention in the GZP. The comparison of PM2.5 chemical compositions and implications across major regions of China and the globe were investigated. NH4NO3 was the most important contributor to bext in three heating seasons. The average bext was decreased from 694.3 ± 399.1 Mm-1 (HS1) to 359.3 ± 202.3 Mm-1 (HS3). PM2.5 had a threshold concentration of 75 µg m-3, 64 µg m-3, and 57 µg m-3 corresponding to the visual range (VR) < 10 km in HS1, HS2, and HS3, respectively. The enhanced impacts of the oxidant on PM2.5 and O3 were observed based on the long-term variations in PM2.5 and OX (Oxidant, the sum of O3 and NO2 mixing ratios) over the five heating seasons and PM2.5 and O3 over six summers from 2016 to 2021. The importance of coordinated control of PM2.5 and O3 was also investigated in the GZP.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estações do Ano , Calefação , Monitoramento Ambiental , Material Particulado/análise , China , Aerossóis/análise
6.
FASEB J ; 35(9): e21332, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423867

RESUMO

Emerging research has highlighted the capacity of microRNA-23a-3p (miR-23a-3p) to alleviate inflammatory pain. However, the molecular mechanism by which miR-23a-3p attenuates inflammatory pain is yet to be fully understood. Hence, the current study aimed to elucidate the mechanism by which miR-23a-3p influences inflammatory pain. Bioinformatics was initially performed to predict the inflammatory pain related downstream targets of miR-23a-3p in macrophage-derived extracellular vesicles (EVs). An animal inflammatory pain model was established using Complete Freund's Adjuvant (CFA). The miR-23a-3p expression was downregulated in the microglia of CFA-induced mice, after which the inflammatory factors were determined by ELISA. FISH and immunofluorescence were performed to analyze the co-localization of miR-23a-3p and microglia. Interestingly, miR-23a-3p was transported to the microglia via M2 macrophage-EVs, which elevated the mechanical allodynia and the thermal hyperalgesia thresholds in mice model. The miR-23a-3p downstream target, USP5, was found to stabilize HDAC2 via deubiquitination to promote its expression while inhibiting the expression of NRF2. Taken together, the key findings of the current study demonstrate that macrophage-derived EVs containing miR-23a-3p regulates the HDAC2/NRF2 axis by decreasing USP5 expression to alleviate inflammatory pain, which may provide novel therapeutic targets for the treatment of inflammatory pain.


Assuntos
Vesículas Extracelulares/metabolismo , Histona Desacetilase 2/metabolismo , Inflamação/metabolismo , Macrófagos/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Dor/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem Celular , Enzimas Desubiquitinantes/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Estabilidade Enzimática , Vesículas Extracelulares/genética , Inflamação/genética , Inflamação/terapia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Modelos Biológicos , Dor/genética , Manejo da Dor , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
7.
Hepatology ; 68(5): 1769-1785, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29704259

RESUMO

There is no effective treatment method for nonalcoholic fatty liver disease (NAFLD), the most common liver disease. The exact mechanism underlying the pathogenesis of NAFLD remains to be elucidated. Here, we report that tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein (TRUSS) acts as a positive regulator of NAFLD and in a variety of metabolic disorders. TRUSS expression was increased in the human liver specimens with NAFLD or nonalcoholic steatohepatitis, and in the livers of high-fat diet (HFD)-induced and genetically obese mice. Conditional knockout of TRUSS in hepatocytes significantly ameliorated hepatic steatosis, insulin resistance, glucose intolerance, and inflammatory responses in mice after HFD challenge or in spontaneous obese mice with normal chow feeding. All of these HFD-induced pathological phenotypes were exacerbated in mice overexpressing TRUSS in hepatocytes. We show that TRUSS physically interacts with the inhibitor of nuclear factor κB α (IκBα) and promotes the ubiquitination and degradation of IκBα, which leads to aberrant activation of nuclear factor κB (NF-κB). Overexpressing IκBαS32A/S36A , a phosphorylation-resistant mutant of IκBα, in the hepatocyte-specific TRUSS overexpressing mice almost abolished HFD-induced NAFLD and metabolic disorders. Conclusion: Hepatocyte TRUSS promotes pathological stimuli-induced NAFLD and metabolic disorders, through activation of NF-κB by promoting ubiquitination and degradation of IκBα. Our findings may provide a strategy for the prevention and treatment of NAFLD by targeting TRUSS.


Assuntos
Hepatócitos/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Canais de Cátion TRPC/metabolismo , Transativadores/metabolismo , Animais , Western Blotting , Citocinas/sangue , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Imunoprecipitação , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Ubiquitinação
8.
Environ Sci Technol ; 52(21): 12235-12243, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30339022

RESUMO

Fluorinated methylsiloxanes are modified methylsiloxanes and include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F). Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29-291 ng/L and from 7.02-168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8-5478 ng/g and from 17.2-6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3, and 9.2) varied from 80.6-154 h and from 267-533 h, respectively. CF3(CH2)2MeSi(OH)2 was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.


Assuntos
Rios , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Instalações Industriais e de Manufatura
9.
Environ Res ; 166: 324-333, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29909173

RESUMO

The effect of flavors on carbonyl compound (CC) emission factors (EF) from electronic cigarettes (ECs) vaping was investigated at the default vaping (voltage) setting in all experiments using a total of 21 lab-made e-liquid samples (five different types of retail flavorant bases: beverage/dessert/fruit/mint/tobacco). Each flavorant base was added to a separate unflavored base composed of a 1:1 mixture of propylene glycol/vegetable glycerol (PG/VG) at four levels (5/10/30/50% (v/v)). The e-liquid CC levels increased linearly with flavorant base content, 1.3-10.5 times (R2: 0.762-0.999). The vaping CC EFs increased linearly with flavorant base content (if ≥ 10%) from 1.0 to 92 times (R2: 0.431-0.998). For flavorant base content of 0%, 5%, and 10%, the EFs ranged from undetected to 0.11 µg puff-1 (acetone). The 40-year cancer risk due to formaldehyde (70 kg EC user inhaling 5% flavorant base content e-liquid: 120 puffs day-1) is estimated to be 2.0E-06 (highest) compared to 1.0E-06 for the 1:1 PG:VG base. Most formaldehyde vaped from the fruit flavored e-liquid was the flavorant base. The CC concentrations in EC liquids (before vaping) were approximately linear with e-liquid flavorant base content. Retail e-liquid product information labels should be guided to provide a complete list of all ingredients, their concentrations, and carbonyl compound EFs.


Assuntos
Poluentes Atmosféricos/análise , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/análise , Formaldeído/análise , Propilenoglicol
10.
Chemotherapy ; 62(3): 181-186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28334723

RESUMO

OBJECTIVE: The aim of this work was to investigate the expression of transcription activating protein 4 (AP-4) in gastric cancer (GC) and its impacts on prognosis. METHODS: The cancer tissues and normal tissues of 54 GC patients were sampled for the expression detection of AP-4, and the patients were followed up. RESULTS: The positive expression rate of AP-4 in the cancer tissues (68.5%) was higher than the normal tissues (22.2%; p < 0.01). The lower the tumor differentiation degree and the deeper the invasion depth, the higher the expression rate of AP-4. The median survival time of the patients with positive AP-4 expression was significantly shorter than of those without AP-4 expression (26.3/41.3 months), and the accumulative survival rate of the former was also lower than the latter (χ2 = 4.736, p = 0.03). AP-4 was expressed in GC tissues and normal gastric tissues, with the expression in the former being higher. CONCLUSIONS: The expression of AP-4 was positively related with the tumor differentiation degree, invasion depth, lymph node metastasis, and pTNM stage, while it was not related with patient gender, age, tumor size, location, or distant metastasis. AP-4 might be used as an indicator for the prognosis prediction of GC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias Gástricas/diagnóstico , Fatores de Transcrição/metabolismo , Adulto , Idoso , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia
11.
J Huazhong Univ Sci Technolog Med Sci ; 34(6): 801-807, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25480573

RESUMO

Stellate ganglion blockade (SGB) protects patients from focal cerebral ischemic injury, and transection of the cervical sympathetic trunk (TCST) in a rat model can mimic SGB in humans. The purpose of this study was to investigate the mechanisms underlying the neuroprotective effects of TCST on neuronal damage in the hippocampus in a rat model of middle cerebral artery occlusion (MCAO) in an attempt to elucidate the neuroprotective effects of SGB. The modified method of Zea Longa was used to establish the permanent MCAO model. Male Wistar rats were randomly divided into three groups: sham-operated group, MCAO group, and TCST group. The animals in TCST group were sacrificed 48 h after TCST which was performed after the establishment of the MCAO model. Proteins were extracted from the ipsilateral hippocampus and analyzed by two-dimensional difference gel electrophoresis (2D-DIGE) and peptide mass fingerprinting (PMF). The levels of N-ethylmaleimide-sensitive factor (NSF) were measured as well. The results showed that 11 types of proteins were identified by 2D-DIGE. The expressions of eight proteins were changed both in the sham-operated and TCST groups, and the expressions of the other three proteins were changed in all three groups. Moreover, the expression of NSF was higher in the TCST group than in the MCAO group but lower in the MCAO group than in sham-operated group. The ratio of NSF expression between the MCAO group and shamoperated group was -1.37 (P<0.05), whereas that between the TCST group and MCAO group was 1.35 (P<0.05). Our results imply that TCST increases the expression of NSF in the hippocampus of adult rats with focal cerebral ischemia, which may contribute to the protection of the injured brain. Our study provides a theoretical basis for the therapeutic application of SGB to patients with permanent cerebral ischemia.


Assuntos
Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Regulação da Expressão Gênica , Proteínas Sensíveis a N-Etilmaleimida/biossíntese , Gânglio Estrelado/metabolismo , Transfecção , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Proteínas Sensíveis a N-Etilmaleimida/genética , Ratos , Ratos Wistar , Gânglio Estrelado/patologia
12.
Heliyon ; 10(10): e31481, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813203

RESUMO

Neuropathic pain (NP) is a common debilitating chronic pain condition with limited effective therapeutics. Further investigating mechanisms underlying NP is therefore of great importance for discovering more promising therapeutic targets. In the current study, we employed high-throughput RNA sequencing to explore transcriptome profiles of mRNAs and microRNAs in the dorsal root ganglia (DRG) following chronic constriction injury (CCI) and also integrated published datasets for comprehensive analysis. First, we established CCI rat model confirmed by behavioral testings, and excavated 467 differentially expressed mRNAs (DEGs) and 16 differentially expressed microRNAs (DEmiRNAs) in the ipsilateral lumbar 4-6 DRG of CCI rats 11 days after surgery. Functional enrichment analysis of 337 upregulated DEGs showed that most of the DEGs were enriched in inflammation- and immune-associated biological processes and signaling pathways. The protein-protein interaction networks were constructed and hub DEGs were screened. Besides hub DEGs, we also identified 113 overlapped DEGs by intersecting our dataset with dataset GSE100122. Subsequently, we predicted potential miRNA-mRNA regulatory pairs using DEmiRNAs and a given set of key DEGs (including hub and overlapped DEGs). By integrative analysis, we found commonly differentially expressed mRNAs and miRNAs following CCI of different time points and different nerve injury types. Highlighted mRNAs include Atf3, Vip, Gal, Npy, Adcyap1, Reg3b, Jun, Cd74, Gadd45a, Tgm1, Csrp3, Sprr1a, Serpina3n, Gap43, Serpinb2 and Vtcn1, while miRNAs include miR-21-5p, miR-34a-5p, miR-200a-3p, miR-130a-5p, miR-216b-5p, miR-217-5p, and miR-541-5p. Additionally, 15 DEGs, including macrophages-specific (Cx3cr1, Arg1, Cd68, Csf1r) and the ones related to macrophages' involvement in NP (Ccl2, Fcgr3a, Bdnf, Ctss, Tyrobp) were verified by qRT-PCR. By functional experiments in future studies, promising therapeutic targets for NP treatment may be identified among these mRNAs and miRNAs.

13.
Dalton Trans ; 53(24): 10065-10069, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38847200

RESUMO

Heteroleptic, bimetallic (Mg/K) cyclopentadienyl complexes (2-4) were synthesized by the reaction of the Mg-Mg-bonded compound [K(THF)3]2[LMg-MgL] (1, L = [(2,6-iPr2C6H3)NC(CH3)]22-) with cyclopentadiene derivatives, 6,6-dimethylfulvene, 6-(dimethylamino)fulvene, or 1,2,3,4-tetramethyl-1,3-cyclopentadiene. The reactions proceed through diverse pathways, including hydrogen abstraction, C-C coupling, and dehydrogenation, depending on the property of the polyene substrate, thus providing an access to alkali/alkaline earth metal cyclopentadienyl complexes.

14.
Sci Total Environ ; 922: 171200, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408662

RESUMO

The CO2 and 14CO2 levels in air samples from the northern foot of the Qinling Mountains (Xi'an, China) were determined. In 2021, a hexacopter unmanned aerial vehicle sampled air at different heights, from near-ground to 2000 m. The objectives of this study were to determine vertical characteristics of CO2 and 14CO2, the sources of different-height CO2, and the influence of air mass transport. The CO2 concentrations mainly exhibited a slight decreasing trend with increasing height during summer observations, which was in contrast to the increasing trend that was followed by a subsequent gradual decreasing trend during early winter observations, with peak CO2 levels (443.4 ± 0.4-475.7 ± 0.5 ppm) at 100-500 m. The variation in vertical concentrations from 20 to 1000 m in early winter observations (21.6 ± 19.3 ppm) was greater than that in summer observations (14.6 ± 14.3 ppm), and the maximum vertical variation from 20 to ∼2000 m reached 61.1 ppm. Combining Δ14C and δ13C vertical measurements, the results showed that fossil fuel CO2 (CO2ff, 56.1 ± 15.2 %), which mainly come from coal combustion (81.2 ± 3.4 %), was the main contributor to CO2 levels in excess of the background level (CO2ex) during early winter observations. In contrast, biological CO2 (CO2bio) dominated CO2ex in summer observations. The vertical distributions of CO2ff in early winter observations and CO2bio in summer observations were consistent with those of CO2 during early winter and summer observations, respectively. The strong correlation between winter CO2bio and ΔCO (r = 0.81, p < 0.01) indicated that biomass burning was the main contributor to CO2bio during early winter observations. Approximately half of the air masses originated from the Guanzhong Basin during observations. The results provide insights into the vertical distribution of different-sources of atmospheric CO2 in scientific support of formulating carbon emission-reduction strategies.

15.
Sci Total Environ ; 945: 174093, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906307

RESUMO

Black carbon (BC) and brown carbon (BrC) over the high-altitude Tibetan Plateau (TP) can significantly influence regional and global climate change as well as glacial melting. However, obtaining plateau-scale in situ observations is challenging due to its high altitude. By integrating reanalysis data with on-site measurements, the spatial distribution of BC and BrC can be accurately estimated using the random forest algorithm (RF). In our study, the on-site observations of BC and BrC were successively conducted at four sites from 2018 to 2021. Ground-level BC and BrC concentrations were then obtained at a spatial resolution of 0.25° × 0.25° for three periods (including Periods-1980, 2000, and 2020) using RF and multi-source data. The highest annual concentrations of BC (1363.9 ± 338.7 ng/m3) and BrC (372.1 ± 96.2 ng/m3) were observed during Period-2000. BC contributed a dominant proportion of carbonaceous aerosol, with concentrations 3-4 times higher than those of BrC across the three periods. The ratios of BrC to BC decreased from Period-1980 to Period-2020, indicating the increasing importance of BC over the TP. Spatial distributions of plateau-scale BC and BrC concentrations showed heightened levels in the southeastern TP, particularly during Period-2000. These findings significantly enhance our understanding of the spatio-temporal distribution of light-absorbing carbonaceous aerosol over the TP.

16.
Front Microbiol ; 15: 1397792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946908

RESUMO

Introduction: Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC), remains a global health concern in both human and animals. However, the absence of rapid, accurate, and highly sensitive detection methods to differentiate the major pathogens of MTBC, including M. tuberculosis, M. bovis, and BCG, poses a potential challenge. Methods: In this study, we have established a triplex droplet digital polymerase chain reaction (ddPCR) method employing three types of probe fluorophores, with targets M. tuberculosis (targeting CFP-10-ESAT-6 gene of RD1 and Rv0222 genes of RD4), M. bovis (targeting CFP-10-ESATs-6 gene of RD1), and BCG (targeting Rv3871 and Rv3879c genes of ΔRD1), respectively. Results: Based on optimization of annealing temperature, sensitivity and repeatability, this method demonstrates a lower limit of detection (LOD) as 3.08 copies/reaction for M. tuberculosis, 4.47 copies/reaction for M. bovis and 3.59 copies/reaction for BCG, without cross-reaction to Mannheimia haemolytica, Mycoplasma bovis, Haemophilus parasuis, Escherichia coli, Pasteurella multocida, Ochrobactrum anthropi, Salmonella choleraesuis, Brucella melitensis, and Staphylococcus aureus, and showed repeatability with coefficients of variation (CV) lower than 10%. The method exhibits strong milk sample tolerance, the LOD of detecting in spike milk was 5 × 103 CFU/mL, which sensitivity is ten times higher than the triplex qPCR. 60 clinical DNA samples, including 20 milk, 20 tissue and 20 swab samples, were kept in China Animal Health and Epidemiology Center were tested by the triplex ddPCR and triplex qPCR. The triplex ddPCR presented a higher sensitivity (11.67%, 7/60) than that of the triplex qPCR method (8.33%, 5/60). The positive rates of M. tuberculosis, M. bovis, and BCG were 1.67, 10, and 0% by triplex ddPCR, and 1.67, 6.67, and 0% by triplex qPCR, with coincidence rates of 100, 96.7, and 100%, respectively. Discussion: Our data demonstrate that the established triplex ddPCR method is a sensitive, specific and rapid method for differentiation and identification of M. tuberculosis, M. bovis, and BCG.

17.
Sci Total Environ ; 917: 170038, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38232839

RESUMO

PM2.5 pollution events are often happened in urban agglomeration locates in mountain-basin regions due to the complex terra and intensive emissions. Source apportionment is essential for identifying the pollution sources and important for developing local mitigation strategies, however, it is influenced by regional transport. To understand how the regional transport influences the atmospheric environment of a basin, we connected the PM2.5 source contributions estimated by observation-based receptor source apportionment and the regional contributions estimated by a tagging technology in the comprehensive air quality model with extensions (CAMx) via an artificial neural network (ANNs). The result shows that the PM2.5 in Xi'an was from biomass burning, coal combustion, traffic related emissions, mineral dust, industrial emissions, secondary nitrate and sulfate. 48.8 % of the PM2.5 in study period was from Xi'an, then followed by the outside area of Guanzhong basin (28.2 %), Xianyang (14.6 %) and Weinan (5.8 %). Baoji and Tongchuan contributed trivial amount. The sensitivity analysis showed that the transported PM2.5 would lead to divergent results of source contributions at Xi'an. The transported PM2.5 from the outside has great a potential to alter the source contributions implying a large uncertainty of the source apportionment introduced when long-range transported pollutants arrived. It suggests that a full comprehension on the impacts of regional transport can lower the uncertainty of the local PM2.5 source apportionment and reginal collaborative actions can be of great use for pollution mitigation.

18.
Microbiol Spectr ; 11(3): e0520622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37195224

RESUMO

Fusarium asiaticum is an epidemiologically important pathogen of cereal crops in east Asia, accounting for both yield losses and mycotoxin contamination problems in food and feed products. FaWC1, a component of the blue-light receptor White Collar complex (WCC), relies on its transcriptional regulatory zinc finger domain rather than the light-oxygen-voltage domain to regulate pathogenicity of F. asiaticum, although the downstream mechanisms remain obscure. In this study, the pathogenicity factors regulated by FaWC1 were analyzed. It was found that loss of FaWC1 resulted in higher sensitivity to reactive oxygen species (ROS) than in the wild type, while exogenous application of the ROS quencher ascorbic acid restored the pathogenicity of the ΔFawc1 strain to the level of the wild type, indicating that the reduced pathogenicity of the ΔFawc1 strain is due to a defect in ROS tolerance. Moreover, the expression levels of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway genes and their downstream genes encoding ROS scavenging enzymes were downregulated in the ΔFawc1 mutant. Upon ROS stimulation, the FaHOG1-green fluorescent protein (GFP)-expressing signal driven by the native promoter was inducible in the wild type but negligible in the ΔFawc1 strain. Overexpressing Fahog1 in the ΔFawc1 strain could recover the ROS tolerance and pathogenicity of the ΔFawc1 mutant, but it remained defective in light responsiveness. In summary, this study dissected the roles of the blue-light receptor component FaWC1 in regulating expression levels of the intracellular HOG-MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. IMPORTANCE The well-conserved fungal blue-light receptor White Collar complex (WCC) is known to regulate virulence of several pathogenic species for either plant or human hosts, but how WCC determines fungal pathogenicity remains largely unknown. The WCC component FaWC1 in the cereal pathogen Fusarium asiaticum was previously found to be required for full virulence. The present study dissected the roles of FaWC1 in regulating the intracellular HOG MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. This work thus extends knowledge of the association between fungal light receptors and the intracellular stress signaling pathway to regulate oxidative stress tolerance and pathogenicity in an epidemiologically important fungal pathogen of cereal crops.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Estresse Oxidativo , Humanos , Virulência/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
19.
Huan Jing Ke Xue ; 44(10): 5382-5391, 2023 Oct 08.
Artigo em Zh | MEDLINE | ID: mdl-37827756

RESUMO

Air pollution continues to be a serious problem in Xi'an. A heavy pollution process and formation mechanism were investigated in Xi'an in January 2019 using multi-source methods (such as material balance and sulfur/nitrogen oxidation rate (SOR/NOR)). The multi-source data included the concentrations of PM2.5, PM10, SO2, NO2, CO, and O3; the chemical components of PM2.5; the meteorological records of ground and vertical observations; the atmospheric reanalysis data. Three phases were obtained including the accumulation phase (P1), maintenance phase (P2), and dispersion phase (P3) during the pollution period. The pollution event was primarily attributed to the superposition of adverse weather conditions and feedback effects. During the periods of P1 and P2, the area of Xi'an was affected by blocking and zonal westerly airflow at 500 hPa (with flat westerly airflow) and uniform-distribution pressure at sea level with a limited pressure gradient and stable weather conditions, and the easterly wind was dominant at 925 hPa; not all of these factors were conducive to the pollutant diffusion. An interaction feedback mechanism between meteorological conditions and heavy pollution could be studied using the ground-based microwave radiometer. The correlations between PM2.5 and inversions of water vapor density, relative humidity, air temperature, and temperature inversion were significant with coefficients of 0.86, 0.62, 0.53, and 0.38, respectively. The feedback mechanism was primarily manifested as follows:with the pollutant accumulation, the radiative cooling effect could lead to or strengthen the occurrence and intensity of temperature inversion, decrease the mixed layer height, and cause moisture accumulation. High humidity could further maintain the pollution by accelerating the secondary formation and promoting the hygroscopic growth of aerosol particles. Therefore, the dominant chemical components to PM2.5were secondary inorganic ions (SO42-+NO3-+NH4+, SNA) and "other" components during the period of P2, with contributions of 43.2% and 23.1%, respectively. In addition, the peak values of PM2.5, SOR, NOR, and the light extinction coefficients all occurred on the same days (January 3 and 6), indicating that the effect of secondary formation was important for both heavy pollution events and visibility. The total contribution of NH4NO3, organic matter (OM), (NH4)2SO4, and EC to the light extinction coefficient was more than 85%. Limited variations in the proportion for components were observed in three phases. During the period of P3, the strong cold air in the mid-lower atmosphere was conducive to the dry and clean air sinking and the pressure gradient at sea level increasing. These were beneficial to the diffusion of air pollutants and water vapor.

20.
Chemosphere ; 307(Pt 4): 136076, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988769

RESUMO

Organic fouling caused by dissolved organic matter (DOM) is a critical challenge for membrane technologies. In this study, prediction models for the fouling of commercial polyether sulfone (PES) and regenerated cellulose (RC) ultrafiltration membranes by DOM were established based on the hydrophobicity of DOM. The organic fouling behavior of 40 natural water samples collected from Lake Taihu was investigated. The fouling propensity of water samples on ultrafiltration membranes was evaluated using the fouling index (FI). The hydrophobicity of DOM in water samples was quantified by its partition coefficient in an aqueous two-phase system (KATPS). The FI of water samples on RC membranes was lower than that on PES membranes due to stronger repulsive Lewis acid-base interactions, which reduced DOM-membrane interactions. A significant positive correlation was found between KATPS and FI, suggesting the important role of DOM hydrophobicity in the organic fouling of ultrafiltration membranes. FI prediction models using KATPS as the variable were established using a training group containing 20 water samples for PES and RC membranes, respectively. The resulting models were then validated using the additional 20 water samples, which suggested good prediction power (RMSE = 1.65). The pH effect on the organic fouling can be adequately predicted by the same model with KATPS values measured at given pH. The results suggest that KATPS can be used as a convenient index for assessing the initial organic fouling of ultrafiltration membranes by freshwater DOM.


Assuntos
Ultrafiltração , Purificação da Água , Matéria Orgânica Dissolvida , Ácidos de Lewis , Membranas Artificiais , Polímeros , Sulfonas , Ultrafiltração/métodos , Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA