Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(18): 7651-7658, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36066512

RESUMO

The metal-intercalated bilayer graphene has a flat band with a high density of states near the Fermi energy and thus is anticipated to exhibit an enhanced strong correlation effect and associated fascinating phenomena, including superconductivity. By using a self-developed multifunctional scanning tunneling microscope, we succeeded in observing the superconducting energy gap and diamagnetic response of a Ca-intercalated bilayer graphene below a critical temperature of 8.83 K. The revealed high value of gap ratio, 2Δ/kBTc ≈ 5.0, indicates a strong coupling superconductivity, while the variation of penetration depth with temperature and magnetic field indicates an isotropic s-wave superconductor. These results provide crucial experimental clues for understanding the origin and mechanism of superconductivity in carrier-doped graphene.

2.
Lasers Surg Med ; 54(1): 157-169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412154

RESUMO

OBJECTIVES: Minimally invasive fat sculpting techniques are becoming more widespread with the development of office-based devices and therapies. Electrochemical lipolysis (ECLL) is a needle-based technology that uses direct current (DC) to electrolyze tissue water creating acid and base in situ. In turn, fat is saponified and adipocyte cell membrane lysis occurs. The electrolysis of water can be accomplished using a simple open-loop circuit (V-ECLL) or by incorporating a feedback control circuit using a potentiostat (P-ECLL). A potentiostat utilizes an operational amplifier with negative feedback to allow users to precisely control voltage at specific electrodes. To date, the variation between the two approaches has not been studied. The aim of this study was to assess current and charge transfer variation and lipolytic effect created by the two approaches in an in vivo porcine model. METHODS: Charge transfer measurements from ex vivo V-ECLL and P-ECLL treated porcine skin and fat were recorded at -1 V P-ECLL, -2 V P-ECLL, -3 V P-ECLL, and -5 V V-ECLL each for 5 min to guide dosimetry parameters for in vivo studies. In follow-up in vivo studies, a sedated female Yorkshire pig was treated with both V-ECLL and P-ECLL across the dorsal surface over a range of dosimetry parameters, including -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL, and 5 V V-ECLL each treated for 5 min. Serial biopsies were performed at baseline before treatment, 1, 2, 7, 14, and 28 days after treatment. Tissue was examined using fluorescence microscopy and histology to compare the effects of the two ECLL approaches. RESULTS: Both V-ECLL and P-ECLL treatments induced in-vivo fat necrosis evident by adipocyte membrane lysis, adipocyte denuclearization, and an acute inflammatory response across a 28-day longitudinal study. However, -1.5 V P-ECLL produced a smaller spatial necrotic effect compared to 5 V V-ECLL. In addition, 5 V V-ECLL produced a comparable necrotic effect to that of -2.5 V and -3.5 V P-ECLL. CONCLUSIONS: V-ECLL and P-ECLL at the aforementioned dosimetry parameters both achieved fat necrosis by adipocyte membrane lysis and denuclearization. The -2.5 V and -3.5 V P-ECLL treatments created spatially similar fat necrotic effects when compared to the 5 V V-ECLL treatment. Quantitatively, total charge transfer between dosimetry parameters suggests that -2.5 V P-ECLL and 5 V V-ECLL produce comparable electrochemical reactions. Such findings suggest that a low-voltage closed-loop potentiostat-based system is capable of inducing fat necrosis to a similar extent compared to that of a higher voltage direct current system.


Assuntos
Adipócitos , Lipólise , Animais , Estudos de Viabilidade , Retroalimentação , Feminino , Estudos Longitudinais , Suínos
3.
Artigo em Inglês | MEDLINE | ID: mdl-32042240

RESUMO

Retinal diseases, such as age-related macular degeneration (AMD), are the leading cause of blindness in the elderly population. Since no known cures are currently present, it is crucial to diagnose the condition in its early stages so that disease progression is monitored. Recent advances show that the mechanical elasticity of the posterior eye changes with the onset of AMD. In this work, we present a quantitative method of mapping the mechanical elasticity of the posterior eye using confocal shear wave acoustic radiation force optical coherence elastography (SW-ARF-OCE). This technique has been developed and validated with both an ex-vivo porcine tissue model and a customized in-vivo rabbit model, which both showed the quantified elasticity variations between different layers. This study verifies the feasibility of using this technology for the quantification and diagnosis of retinal diseases from the in-vivo posterior eye.

4.
Opt Express ; 26(6): 7253-7269, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609412

RESUMO

We present a class of novel system characterization methods for spectral-domain optical coherence tomography (SD-OCT) particularly on getting optimized axial resolution performance. Our schemes uniquely utilize the autocorrelation interference response, also known as the self-interference product, which is generated by the optical fields from the imaging sample in automatic interferences. In our methods, an autocorrelation-inducing calibration sample was prepared which was made by sandwiching glass plates. OCT images of the calibration sample were captured by an SD-OCT system under testing. And the image data were processed to find various system characteristics based on the unique properties of autocorrelation interferograms, free of dispersion- and polarization-involved modulations. First, we could analyze the sampling characteristic of the SD-OCT's spectrometer for spectral calibration that enables accurate linear-k resampling of detected spectral fringes. Second, we could obtain the systematic polarization properties for quantifying their impact on the achieved axial resolutions. We found that our methods based on the autocorrelation response provide an easy way of self-characterization and self-validation that is useful in optimizing and maintaining axial resolution performances. It was found very attractive that a variety of system characteristics can be obtained in a single-shot measurement without any increased system complexity.

5.
Opt Lett ; 43(10): 2388-2391, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762599

RESUMO

Optical coherence elastography (OCE) is an emerging imaging modality for the assessment of mechanical properties in soft tissues. Transverse shear wave measurements using OCE can quantify the elastic moduli perpendicular to the force direction, however, missing the elastic information along the force direction. In this study, we developed coaxial excitation longitudinal shear wave measurements for quantification of elastic moduli along the force direction using M-scans. Incorporating Rayleigh wave measurements using non-coaxial lateral scans into longitudinal shear wave measurements, directionally dependent elastic properties can be quantified along the force direction and perpendicular to the force direction. Therefore, the reported system has the capability to image elasticity of anisotropic biological tissues.


Assuntos
Módulo de Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Tomografia de Coerência Óptica/métodos , Imageamento Tridimensional , Fenômenos Mecânicos , Imagens de Fantasmas
6.
Artigo em Inglês | MEDLINE | ID: mdl-27293369

RESUMO

We report on a real-time acoustic radiation force optical coherence elastography (ARF-OCE) system to map the relative elasticity of corneal tissue. A modulated ARF is used as excitation to vibrate the cornea while OCE serves as detection of tissue response. To show feasibility of detecting mechanical contrast using this method, we performed tissue-equivalent agarose phantom studies with inclusions of a different stiffness. We obtained 3-D elastograms of a healthy cornea and a highly cross-linked cornea. Finally we induced a stiffness change on a small portion of a cornea and observed the differences in displacement.

7.
Am J Respir Crit Care Med ; 192(12): 1504-13, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26214043

RESUMO

RATIONALE: Subglottic edema and acquired subglottic stenosis are potentially airway-compromising sequelae in neonates following endotracheal intubation. At present, no imaging modality is capable of in vivo diagnosis of subepithelial airway wall pathology as signs of intubation-related injury. OBJECTIVES: To use Fourier domain long-range optical coherence tomography (LR-OCT) to acquire micrometer-resolution images of the airway wall of intubated neonates in a neonatal intensive care unit setting and to analyze images for histopathology and airway wall thickness. METHODS: LR-OCT of the neonatal laryngotracheal airway was performed a total of 94 times on 72 subjects (age, 1-175 d; total intubation, 1-104 d). LR-OCT images of the airway wall were analyzed in MATLAB. Medical records were reviewed retrospectively for extubation outcome. MEASUREMENTS AND MAIN RESULTS: Backward stepwise regression analysis demonstrated a statistically significant association between log(duration of intubation) and both laryngeal (P < 0.001; multiple r(2) = 0.44) and subglottic (P < 0.001; multiple r(2) = 0.55) airway wall thickness. Subjects with positive histopathology on LR-OCT images had a higher likelihood of extubation failure (odds ratio, 5.9; P = 0.007). Longer intubation time was found to be significantly associated with extubation failure. CONCLUSIONS: LR-OCT allows for high-resolution evaluation and measurement of the airway wall in intubated neonates. Our data demonstrate a positive correlation between laryngeal and subglottic wall thickness and duration of intubation, suggestive of progressive soft tissue injury. LR-OCT may ultimately aid in the early diagnosis of postintubation subglottic injury and help reduce the incidences of failed extubation caused by subglottic edema or acquired subglottic stenosis in neonates. Clinical trial registered with www.clinicaltrials.gov (NCT 00544427).


Assuntos
Intubação Intratraqueal/efeitos adversos , Laringoestenose/diagnóstico , Tomografia de Coerência Óptica/métodos , Diagnóstico Precoce , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos
8.
Opt Lett ; 40(9): 2099-102, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927794

RESUMO

We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.


Assuntos
Acústica , Técnicas de Imagem por Elasticidade/métodos , Fenômenos Mecânicos , Tomografia de Coerência Óptica/métodos , Imagens de Fantasmas , Vibração
9.
Plast Reconstr Surg ; 153(2): 334e-347e, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163479

RESUMO

BACKGROUND: Current minimally invasive fat reduction modalities use equipment that can cost thousands of U.S. dollars. Electrochemical lipolysis (ECLL), using low-cost battery and electrodes (approximately $10), creates acid/base within fat (width, approximately 3 mm), damaging adipocytes. Longitudinal effects of ECLL have not been studied. In this pilot study, the authors hypothesize that in vivo ECLL induces fat necrosis, decreases adipocyte number/viability, and forms lipid droplets. METHODS: Two female Yorkshire pigs (50 to 60 kg) received ECLL. In pig 1, 10 sites received ECLL, and 10 sites were untreated. In pig 2, 12 sites received ECLL and 12 sites were untreated. For ECLL, two electrodes were inserted into dorsal subcutaneous fat and direct current was applied for 5 minutes. Adverse effects of excessive pain, bleeding, infection, and agitation were monitored. Histology, live-dead (calcein, Hoechst, ethidium homodimer-1), and morphology (Bodipy and Hoechst) assays were performed on day 0 and postprocedure days 1, 2, 7, 14 (pig 1 and pig 2), and 28 (pig 2). Average particle area, fluorescence signal areas, and adipocytes and lipid droplet numbers were compared. RESULTS: No adverse effects occurred. Live-dead assays showed adipocyte death on the anode on days 0 to 7 and the cathode on days 1 to 2 (not significant). Bodipy showed significant adipocyte loss at all sites ( P < 0.001) and lipid droplet formation at the cathode site on day 2 ( P = 0.0046). Histology revealed fat necrosis with significant increases in average particle area at the anode and cathode sites by day 14 (+277.3% change compared with untreated, P < 0.0001; +143.4%, P < 0.0001) and day 28 (+498.6%, P < 0.0001; +354.5%, P < 0.0001). CONCLUSIONS: In vivo ECLL induces fat necrosis in pigs. Further studies are needed to evaluate volumetric fat reduction. CLINICAL RELEVANCE STATEMENT: In vivo ECLL induces adipocyte death and fat necrosis. ECLL has the potential to be utilized in body fat contouring.


Assuntos
Compostos de Boro , Necrose Gordurosa , Lipólise , Feminino , Animais , Suínos , Projetos Piloto , Adipócitos
10.
ACS Biomater Sci Eng ; 9(2): 595-600, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634100

RESUMO

The corneal stroma consists of orthogonally stacked collagen-fibril lamellae that determine the shape of the cornea and provide most of the refractive power of the eye. We have applied electromechanical reshaping (EMR), an electrochemical platform for remodeling cartilage and other semirigid tissues, to change the curvature of the cornea as a potential procedure for nonsurgical vision correction. EMR relies on short electrochemical pulses to electrolyze water, with subsequent diffusion of protons into the extracellular matrix of collagenous tissues; protonation of immobilized anions within this matrix disrupts the ionic-bonding network, leaving the tissue transiently responsive to mechanical remodeling. Re-equilibration to physiological pH restores the ionic matrix, resulting in persistent shape change of the tissue. Using ex vivo rabbit eyes, we demonstrate here the controlled change of corneal curvature over a wide range of refractive powers with no loss of optical transparency. Optical coherence tomography (OCT), combined with second-harmonic generation (SHG) and confocal microscopy, establish that EMR enables extremely fine control of corneal contouring while maintaining the underlying macromolecular collagen structure and stromal cellular viability, positioning electrochemical vision therapy as a potentially simple and ultralow-cost modality for correcting routine refractive errors.


Assuntos
Córnea , Substância Própria , Animais , Coelhos , Substância Própria/cirurgia , Colágeno , Matriz Extracelular , Tomografia de Coerência Óptica
11.
Transl Vis Sci Technol ; 11(1): 32, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35061010

RESUMO

Purpose: Corneal chemical injuries (CCI) obscure vision by opacifying the cornea; however, current treatments may not fully restore clarity. Here, we investigated potential-driven electrochemical treatment (P-ECT) to restore clarity after alkaline-based CCI in ex vivo rabbit corneas and examined collagen fiber orientation changes using second harmonic generation (SHG). Methods: NaOH was applied to the corneas of intact New Zealand white rabbit globes. P-ECT was performed on the opacified cornea while optical coherence tomography (OCT) imaging (∼35 frames per second) was simultaneously performed. SHG imaging evaluated collagen fiber structure before NaOH application and after P-ECT. Irrigation with water served as a control. Results: P-ECT restored local optical clarity after NaOH exposure. OCT imaging shows both progression of NaOH injury and the restoration of clarity in real time. Analysis of SHG z-stack images show that collagen fibril orientation is similar between control, NaOH-damaged, and post-P-ECT corneas. NaOH-injured corneas flushed with water (15 minutes) show no restoration of clarity. Conclusions: P-ECT may be a means to correct alkaline CCI. Collagen fibril orientation does not change after NaOH exposure or P-ECT, suggesting that no irreversible matrix level fiber changes occur. Further studies are required to determine the mechanism for corneal clearing and to ascertain the optimal electrical dosimetry parameters and electrode designs. Translational Relevance: Our findings suggest that P-ECT is a potentially effective, low-cost treatment for alkaline CCI.


Assuntos
Lesões da Córnea , Animais , Córnea/diagnóstico por imagem , Lesões da Córnea/terapia , Coelhos , Pele
12.
ACS Photonics ; 7(1): 128-134, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33521165

RESUMO

Ciliary motion in the upper airway is the primary mechanism by which the body transports foreign particulates out of the respiratory system in order to maintain proper respiratory function. The ciliary beating frequency (CBF) is often disrupted with the onset of disease as well as other conditions, such as changes in temperature or in response to drug administration. Current imaging of ciliary motion relies on microscopy and high-speed cameras, which cannot be easily adapted to in-vivo imaging. M-mode optical coherence tomography (OCT) imaging is capable of visualization of ciliary activity, but the field of view is limited. We report on the development of a spectrally encoded interferometric microscopy (SEIM) system using a phase-resolved Doppler (PRD) algorithm to measure and map the ciliary beating frequency within an en face region. This novel high speed, high resolution system allows for visualization of both temporal and spatial ciliary motion patterns as well as propagation of metachronal wave. Rabbit tracheal CBF ranging from 9 to 13 Hz has been observed under different temperature conditions, and the effects of using lidocaine and albuterol have also been measured. This study is the stepping stone to in-vivo studies and the translation of imaging spatial CBF to clinics.

13.
Facial Plast Surg Aesthet Med ; 22(2): 86-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078388

RESUMO

Importance: Body fat contouring procedures have increasingly grown in popularity over the years. As such, there is a need for inexpensive, minimally invasive, and simple fat reduction/contouring technique. Objective: To examine the acid-base and histological changes in ex vivo human adipose tissue after electrochemolipolysis (ECL). Design, Setting, and Participants: Panniculus tissue specimens obtained after abdominoplasty procedures were tumesced with normal saline. Two platinum needle electrodes were inserted into each sample and connected to a DC power supply. Voltage (3-6 V) was varied and applied for 5 min. Specimens were sectioned through a sagittal midline across both electrode insertion sites and immediately stained with pH-sensitive dye. A numerical algorithm was used to calculate the area of the dye color change for each dosimetry pair. Samples were also evaluated utilizing light microscopy (hematoxylin and eosin). An ex vivo human adipose tissue model was used for evaluating the effects of ECL. Results: Acidic and basic pH was appreciated surrounding the anode and cathode insertion sites, respectively. The effect was spatially localized and dose dependent. Statistical analysis of these data showed no significant difference between the mean area of the pH disturbance generated at the anode compared with the cathode at 3 V for 5 min (6.04 mm2 vs. 2.95 mm2, p = 0.40, 95% CI -4.8 to 11). A significantly greater area of pH disruption was generated at the cathode versus the anode in groups 4 V for 5 min (14.7 mm2 vs. 5.00 mm2, p = 0.032, 95% CI 0.93-19), 5 V for 5 min (15.5 mm2 vs. 6.72 mm2, p = 0.019, 95% CI 1.6-16), and 6 V for 5 min (22.5 mm2 vs. 10.0 mm2, p = 0.047, 95% CI 0.22-25). Acute structural changes in adipocytes were observed in all specimens. Vascular damage with adjacent adipocyte necrosis was prominent at the cathode site in group 6 V for 5 min. Conclusions and Relevance: ECL at the studied dosimetry parameters induced acid and base changes in human adipose tissue, suggesting its potential use in nonsurgical fat reduction as an ultralow cost alternative to current lipolytic devices and pharmaceuticals. Level of Evidence: NA.


Assuntos
Abdominoplastia/métodos , Contorno Corporal/métodos , Técnicas Eletroquímicas/métodos , Lipectomia/métodos , Gordura Subcutânea Abdominal/cirurgia , Biomarcadores/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Oxirredução , Gordura Subcutânea Abdominal/metabolismo , Gordura Subcutânea Abdominal/patologia
14.
Biomed Opt Express ; 10(11): 5650-5659, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31799037

RESUMO

Ciliary activity, characterized by the coordinated beating of ciliary cells, generates the primary driving force for oviduct tubal transport, which is an essential physiological process for successful pregnancies. Malfunction of the cilium in the fallopian tube, or oviduct, may increase the risk of infertility and tubal pregnancy that can result in maternal death. While many ex-vivo studies have been carried out using bright field microscopy, this technique is not feasible for the in-vivo investigation of oviduct ciliary beating frequency (CBF). Optical coherence tomography (OCT) has been able to provide in-vivo CBF imaging in a mouse model, but its resolution may be insufficient to resolve the spatial and temporal features of the cilium. Our group has recently developed the phase resolved Doppler (PRD) OCT method to visualize ciliary strokes at ultra-high displacement sensitivity. However, the cross-sectional field of view (FOV) may not be ideal for visualizing the surface dynamics of ciliated tissue. In this study, we report on the development of phase resolved Doppler spectrally encoded interferometric microscopy (PRD-SEIM) to visualize the oviduct ciliary activity within an en face FOV. This novel real time imaging system offers micrometer spatial resolution, sub-nanometer displacement sensitivity, and the potential for in-vivo endoscopic adaptation. The feasibility of the approach has been validated through ex-vivo experiments where the porcine oviduct CBF has been measured across different temperature conditions and the application of a drug. CBF ranging from 8 to 12 Hz have been observed at different temperatures, while administration of lidocaine decreased the CBF and deactivated the motile cilia. This study will serve as a stepping stone to in-vivo oviduct ciliary endoscopy and future clinical translations.

15.
Biomed Opt Express ; 10(12): 6272-6285, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853399

RESUMO

Corneal elasticity can resist elastic deformations under intraocular pressure to maintain normal corneal shape, which has a great influence on corneal refractive function. Elastography can measure tissue elasticity and provide a powerful tool for clinical diagnosis. Air-coupled ultrasound optical coherence elastography (OCE) has been used in the quantification of ex-vivo corneal elasticity. However, in-vivo imaging of the cornea remains a challenge. The 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm was developed to distinguish the in-vivo cornea vibration from the axial eye motion in anesthetized rabbits and visualize the elastic wave propagation clearly. The elastic wave group velocity of in-vivo rabbit cornea was measured to be 5.96 ± 0.55 m/s, which agrees with other studies. The results show the potential of 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm for quantitative in-vivo assessment of corneal elasticity.

16.
Neurophotonics ; 6(4): 041112, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31763352

RESUMO

The mechanosensitivity of the optic nerve head (ONH) plays a pivotal role in the pathogenesis of glaucoma. Characterizing elasticity of the ONH over changing physiological pressure may provide a better understanding of how changes in intraocular pressure (IOP) lead to changes in the mechanical environment of the ONH. Optical coherence elastography (OCE) is an emerging technique that can detect tissue biomechanics noninvasively with both high temporal and spatial resolution compared with conventional ultrasonic elastography. We describe a confocal OCE system in measuring ONH elasticity in vitro, utilizing a pressure inflation setup in which IOP is controlled precisely. We further utilize the Lamb wave model to fit the phase dispersion curve during data postprocessing. We present a reconstruction of Young's modulus of the ONH by combining our OCE system with a Lamb wave model for the first time. This approach enables the quantification of Young's modulus of the ONH, which can be fit using a piecewise polynomial to the corresponding IOP.

17.
Biomed Opt Express ; 9(9): 4054-4063, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615733

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly (over the age of 60 years) in western countries. In the early stages of the disease, structural changes may be subtle and cannot be detected. Recently it has been postulated that the mechanical properties of the retina may change with the onset of AMD. In this manuscript, we present a novel, non-invasive means that utilizes synchronized acoustic radiation force optical coherence elastography (ARF-OCE) to measure and estimate the elasticity of cadaver porcine retina. Both regions near the optic nerve and in the peripheral retina were studied. An acoustic force is exerted on the tissue for excitation and the resulting tissue vibrations, often in the nanometer scale, are detected with high-resolution optical methods. Segmentation has been performed to isolate individual layers and the Young's modulus has been estimated for each. The results have been successfully compared and mapped to corresponding histological results using H&E staining. Finally, 64 elastograms of the retina were analyzed, as well as the elastic properties, with stiffness ranging from 1.3 to 25.9 kPa in the ganglion to the photoreceptor sides respectively. ARF-OCE allows for the elasticity mapping of anatomical retinal layers. This imaging approach needs further evaluation but has the potential to allow physicians to gain a better understanding of the elasticity of retinal layers in retinal diseases such as AMD.

18.
Invest Ophthalmol Vis Sci ; 59(1): 455-461, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29368002

RESUMO

Purpose: We used acoustic radiation force optical coherence elastography (ARF-OCE) to map out the elasticity of retinal layers in healthy and diseased in vivo rabbit models for the first time. Methods: A healthy rabbit eye was proptosed and imaged using ARF-OCE, by measuring the tissue deformation after an acoustic force is applied. A diseased retinal inflammation model was used to observe the contrast before and after disease formation. Retinal histologic analysis was performed to identify layers of the retina corresponding with the optical images. Results: The general trend of the retinal layer elasticity is increasing stiffness from the ganglion side to the photoreceptor side, with the stiffest layer being the sclera. In a healthy rabbit model, the mechanical properties varied from 3 to 16 kPa for the five layers that were identified via optical imaging and histology (3.09 ± 0.46, 3.82 ± 0.88, 4.53 ± 0.74, 6.59 ± 2.27, 16.11 ± 5.13 kPa). In the diseased model, we have induced optical damage in a live rabbit and observed a change in the stiffness trend in its retina. Conclusions: High sensitivity elasticity maps can be obtained using the ARF-OCE system to differentiate different retinal layers. Subtle changes in the mechanical properties during the onset of diseases, such as retinal degeneration, can be measured and aid in early clinical diagnosis. This study validates our imaging system for the characterization of retinal elasticity for the detection of retinal diseases in vivo.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Elasticidade/fisiologia , Segmento Posterior do Olho/fisiologia , Retina/fisiologia , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica/métodos , Acústica , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Luz , Segmento Posterior do Olho/diagnóstico por imagem , Coelhos , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/fisiopatologia , Retina/diagnóstico por imagem , Retina/efeitos da radiação
19.
Sci Rep ; 7(1): 14525, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109462

RESUMO

The main cause of acute coronary events, such as thrombosis, is the rupture of atherosclerotic plaques. Typical intravascular optical coherence tomography (IVOCT) imaging systems that utilize a 1.3 µm swept source laser are often used for identifying fibrous cap thickness of plaques, yet cannot provide adequate depth penetration to resolve the size of the lipid pool. Here, we present a novel  IVOCT system with a 1.7 µm center wavelength swept light source that can readily penetrate deeper into the tissue because of the longer wavelength and allows for better identification of plaques due to the lipid absorption spectrum at 1.7 µm. Using this system, we have imaged a human coronary artery to evaluate the performance of the novel OCT system and verified the results by hematoxylin and eosin (H&E) histology. The significantly improved imaging depth and better identification sensitivity suggest that the 1.7 µm OCT system holds great potential  that can be further translated for in-vivo applications of atherosclerosis characterization.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Lasers , Placa Aterosclerótica/diagnóstico por imagem , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Doença da Artéria Coronariana/patologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Endoscópios , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Placa Aterosclerótica/patologia , Sensibilidade e Especificidade
20.
Biomed Opt Express ; 8(2): 1036-1044, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28271001

RESUMO

We present a tri-modality imaging system and fully integrated tri-modality probe for intravascular imaging. The tri-modality imaging system is able to simultaneously acquire optical coherence tomography (OCT), ultrasound (US), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. We conducted imaging from a male New Zealand white rabbit to evaluate the performance of the tri-modality system. In addition, tri-modality images of rabbit aortas were correlated with hematoxylin and eosin (H&E) histology to check the measurement accuracy. The fully integrated miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA