Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728981

RESUMO

The increasing concern over pesticide pollution in water bodies underscores the need for effective mitigation strategies to support the transition towards sustainable agriculture. This study assesses the effectiveness of landscape mitigation strategies, specifically vegetative buffer strips, in reducing glyphosate loads at the catchment scale under realistic conditions. Conducted over six years (2014-2019) in a small agricultural region in Belgium, our research involved the analysis of 732 water samples from two monitoring stations, differentiated by baseflow and event-driven sampling, and before (baseline) and after the implementation of mitigation measures. The results indicated a decline in both the number and intensity of point source losses over the years. Additionally, there was a general decrease in load intensity; however, the confluence of varying weather conditions (notably dry years during the mitigation period) and management practices (the introduction of buffer strips) posed challenges for a statistically robust evaluation of each contributing factor. A reduction of loads was measured when comparing mitigation with baseline, although this reduction is not statistically significant. Glyphosate loads during rainfall events correlated with a rainfall index and runoff ratio. Overall, focusing the mitigation strategy on runoff and erosion was a valid approach. Nevertheless, challenges remain, as evidenced by the continuous presence of glyphosate in baseflow conditions, highlighting the complex dynamics of pesticide transport. The study concludes that while progress has been made towards reducing pesticide pollution, the complexity of interacting factors necessitates further research. Future directions should focus on enhancing farmer engagement in mitigation programs and developing experiments with more intense data collection that help to assess underlying dynamics of pesticide pollution and the impact of mitigation strategies in more detail, contributing towards the goal of reducing pesticide pollution in water bodies.


Assuntos
Agricultura , Glifosato , Bélgica , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Glicina/análogos & derivados , Glicina/análise , Praguicidas/análise
2.
J Environ Manage ; 246: 583-593, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202826

RESUMO

Identifying priority areas is an essential step in developing management strategies to reduce pesticide loads in surface water. A spatially explicit model-based approach was developed to detect priority areas for diffuse pesticide pollution at catchment scale. The method uses available datasets and considers different pesticide pathways in the environment post-application. The approach was applied in a catchment area in SE Flanders (Belgium) as a case study. Calculated risk areas were obtained using detailed landscape data and combining pesticide emissions and hydrological connectivity. The risk areas obtained were further compared with an alternative observation-based method, developed specifically for this study site that includes long-term field observations and local expert knowledge. Both methods equally classified 50% of the areas. The impact of crop rotation on the calculated risk was analysed. High-risk areas were identified and added to a cumulative map over all five years to evaluate temporal variations. The model-based approach was used for the initial identification of risk areas at the study site. The tool helps to prioritise zones and detect particular fields to target landscape mitigation measures to reduce diffuse pesticide pollution reaching surface water bodies.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Bélgica , Poluição da Água
3.
Environ Sci Pollut Res Int ; 27(32): 40604-40617, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32671701

RESUMO

A critical problem derived from airport operations is the environmental impact of runoff water. Airport runoff includes a complex mixture of pollutants, e.g., from deicing agents, that may affect negatively natural water bodies. This study assesses the spatial and temporal aquatic ecotoxicity of runoff water and possible aeroplane drift in a German airport. Over winter 2012-2013, from November to May, water samples were collected within the airport and surrounding area. These samples were analyzed using traditional physicochemical analysis and biotests with two aquatic organisms from different trophic levels, Lemna gibba and Aliivibrio fischeri. Overall, the samples examined in this study were relatively non-toxic to the tested organisms. The physicochemical parameters were mainly influenced by the sampling period being higher in colder months. In contrast, the ecotoxicity was influenced by the sampling site. For sites within the airport, a high correlation between the physicochemical parameters (EC and TOC) and toxicity in L. gibba was found. These correlations were not evident in samples taken outside the airport or when A. fischeri was used as a bioindicator. However, a pronounced seasonality has been observed, linked to the coldest months with average inhibition values of 50% in L. gibba and 25% in A. fischeri, particularly in January. Both biotests yielded differing results; therefore, more biotests should be included. However, L. gibba showed a good response with this type of water samples to be included in future studies together with detailed chemical analysis. The present study provides data to assess the potential ecotoxicological effects of airport runoff affected by winter operations.


Assuntos
Araceae , Poluentes Químicos da Água , Aeroportos , Aliivibrio fischeri , Bioensaio , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA