RESUMO
Breast cancer (BC) continues to pose a significant burden on global cancer-related morbidity and mortality, primarily driven by metastasis. However, the combined influence of microRNAs (miRNAs) and intratumoral microbiota on BC metastasis remains largely unexplored. In this study, we aimed to elucidate the interplay between intratumoral microbiota composition, miRNA expression profiles, and their collective influence on metastasis development in BC patients by employing 16S rRNA sequencing and qPCR methodologies. Our findings revealed an increase in the expression of miR-149-5p, miR-20b-5p, and miR-342-5p in metastatic breast cancer (Met-BC) patients. The Met-BC patients exhibited heightened microbial richness and diversity, primarily attributed to diverse pathogenic bacteria. Taxonomic analysis identified several pathogenic and pro-inflammatory species enriched in Met-BC, contrasting with non-metastatic breast cancer (NonMet-BC) patients, which displayed an enrichment in potential probiotic and anti-inflammatory species. Notably, we identified and verified a baseline prognostic signature for metastasis in BC patients, with its clinical relevance further validated by its impact on overall survival. In conclusion, the observed disparities in miRNA expression and species-level bacterial abundance suggest their involvement in BC progression. The development of a prognostic signature holds promise for metastasis risk assessment, paving the way for personalized interventions and improved clinical outcomes in BC patients.
Assuntos
Neoplasias da Mama , Progressão da Doença , MicroRNAs , Microbiota , Metástase Neoplásica , Humanos , MicroRNAs/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Feminino , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico , Adulto , IdosoRESUMO
Gut microbiome (GM) and its either pro-tumorigenic or anti-tumorigenic role is intriguing and constitutes an evolving landscape in translational oncology. It has been suggested that these microorganisms may be involved in carcinogenesis, cancer treatment response and resistance, as well as predisposition to adverse effects. In melanoma patients, one of the most immunogenic cancers, immune checkpoint inhibitors (ICI) and MAPK-targeted therapy-BRAF/MEK inhibitors-have revolutionized prognosis, and the study of the microbiome as a modulating factor is thus appealing. Although BRAF/MEK inhibitors constitute one of the main backbones of treatment in melanoma, little is known about their impact on GM and how this might correlate with immune re-induction. On the contrary, ICI and their relationship to GM has become an interesting field of research due to the already-known impact of immunotherapy in modulating the immune system. Immune reprogramming in the tumor microenvironment has been established as one of the main targets of microbiome, since it can induce immunosuppressive phenotypes, promote inflammatory responses or conduct anti-tumor responses. As a result, ongoing clinical trials are evaluating the role of fecal microbiota transplant (FMT), as well as the impact of using dietary supplements, antibiotics and probiotics in the prediction of response to therapy. In this review, we provide an overview of GM's link to cancer, its relationship with the immune system and how this may impact response to treatments in melanoma patients. We also discuss insights about novel therapeutic approaches including FMT, changes in diet and use of probiotics, prebiotics and symbiotics. Finally, we hypothesize on the possible pathways through which GM may impact anti-tumor efficacy in melanoma patients treated with targeted therapy, an appealing subject of which little is known.
Assuntos
Microbioma Gastrointestinal , Melanoma , Segunda Neoplasia Primária , Antibacterianos/uso terapêutico , Transplante de Microbiota Fecal , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno , Segunda Neoplasia Primária/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Microambiente TumoralRESUMO
Breast cancer (BC) is the most prevalent cancer in women. While usually detected when localized, invasive procedures are still required for diagnosis. Herein, we developed a novel ultrasensitive pipeline to detect circulating tumor DNA (ctDNA) in a series of 75 plasma samples from localized BC patients prior to any medical intervention. We first performed a tumor-informed analysis to correlate the mutations found in tumor tissue and plasma. Disregarding the tumor data next, we developed an approach to detect tumor mutations in plasma. We observed a mutation concordance between the tumor and plasma of 29.50% with a sensitivity down to 0.03% in mutant variant allele frequency (VAF). We detected mutations in 33.78% of the samples, identifying eight patients with plasma-only mutations. Altogether, we determined a specificity of 86.36% and a positive predictive value of 88.46% for BC detection. We demonstrated an association between higher ctDNA median VAF and higher tumor grade, multiple plasma mutations with a likelihood of relapse and more frequent TP53 plasma mutations in hormone receptor-negative tumors. Overall, we have developed a unique ultra-sensitive sequencing workflow with a technology not previously employed in early BC, paving the way for its application in BC screening.
Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , DNA Tumoral Circulante/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Recidiva Local de Neoplasia/genética , Mutação , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
Emerging evidence has suggested that dysbiosis of the gut microbiota may influence the drug efficacy of colorectal cancer (CRC) patients during cancer treatment by modulating drug metabolism and the host immune response. Moreover, gut microbiota can produce metabolites that may influence tumor proliferation and therapy responsiveness. In this study we have investigated the potential contribution of the gut microbiota and microbial-derived metabolites such as short chain fatty acids and polyamines to neoadjuvant radiochemotherapy (RCT) outcome in CRC patients. First, we established a profile for healthy gut microbiota by comparing the microbial diversity and composition between CRC patients and healthy controls. Second, our metagenomic analysis revealed that the gut microbiota composition of CRC patients was relatively stable over treatment time with neoadjuvant RCT. Nevertheless, treated patients who achieved clinical benefits from RTC (responders, R) had significantly higher microbial diversity and richness compared to non-responder patients (NR). Importantly, the fecal microbiota of the R was enriched in butyrate-producing bacteria and had significantly higher levels of acetic, butyric, isobutyric, and hexanoic acids than NR. In addition, NR patients exhibited higher serum levels of spermine and acetyl polyamines (oncometabolites related to CRC) as well as zonulin (gut permeability marker), and their gut microbiota was abundant in pro-inflammatory species. Finally, we identified a baseline consortium of five bacterial species that could potentially predict CRC treatment outcome. Overall, our results suggest that the gut microbiota may have an important role in the response to cancer therapies in CRC patients.
Assuntos
Neoplasias Colorretais/terapia , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Terapia Neoadjuvante , Poliaminas/sangue , Idoso , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Pessoa de Meia-Idade , Permeabilidade , Resultado do TratamentoRESUMO
The exposome, defined as the cumulative measure of external exposures and associated biological responses throughout the lifespan, has emerged in recent years as a cornerstone in biomedical sciences. Metabolomics stands out here as one of the most powerful tools for investigating the interplay between the genetic background, exogenous, and endogenous factors within human health. However, to address the complexity of the exposome, novel methods are needed to characterize the human metabolome. In this work, we have optimized and validated a multianalyte metabolomics platform for large-scale quantitative exposome research in plasma and urine samples, based on the use of simple extraction methods and high-throughput metabolomic fingerprinting. The methodology enables, for the first time, the simultaneous characterization of the endogenous metabolome, food-related metabolites, pharmaceuticals, household chemicals, environmental pollutants, and microbiota derivatives, comprising more than 1000 metabolites in total. This comprehensive and quantitative investigation of the exposome is achieved in short run times, through simple extraction methods requiring small-sample volumes, and using integrated quality control procedures for ensuring data quality. This metabolomics approach was satisfactorily validated in terms of linearity, recovery, matrix effects, specificity, limits of quantification, intraday and interday precision, and carryover. Furthermore, the clinical potential of the methodology was demonstrated in a dietary intervention trial as a case study. In summary, this study describes the optimization, validation, and application of a multimetabolite platform for comprehensive and quantitative metabolomics-based exposome research with great utility in large-scale epidemiological studies.
Assuntos
Expossoma , Metaboloma , Metabolômica/métodos , Adulto , Cromatografia Líquida de Alta Pressão , Dieta , Exposição Ambiental , Feminino , Humanos , Masculino , Espectrometria de Massas , Azeite de Oliva/administração & dosagem , Azeite de Oliva/análise , Azeite de Oliva/metabolismoRESUMO
The aims of this study were to explore intestinal microbial composition and functionality in primary Sjögren's syndrome (pSS) and to relate these findings to inflammation, permeability and the transcription factor Forkhead box protein P3 (FOXP3) gene expression in peripheral blood. The study included 19 pSS patients and 19 healthy controls matched for age, sex, and body mass index. Fecal bacterial DNA was extracted and analyzed by 16S rRNA sequencing using an Ion S5 platform followed by a bioinformatics analysis using Quantitative Insights into Microbial Ecology (QIIME II) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Our data suggest that the gut microbiota of pSS patients differs at both the taxonomic and functional levels with respect to healthy controls. The gut microbiota profile of our pSS patients was characterized by a lower diversity and richness and with Bacteroidetes dominating at the phylum level. The pSS patients had less beneficial or commensal butyrate-producing bacteria and a higher proportion of opportunistic pathogens with proinflammatory activity, which may impair intestinal barrier function and therefore contribute to inflammatory processes associated with pSS by increasing the production of proinflammatory cytokines and decreasing the release of the anti-inflammatory cytokine IL-10 and the peripheral FOXP3 mRNA expression, implicated in the development and function of regulatory T cells (Treg) cells. Further studies are needed to better understand the real impact of dysbiosis on the course of pSS and to conceive preventive or therapeutic strategies to counteract microbiome-driven inflammation.
Assuntos
Disbiose/microbiologia , Fatores de Transcrição Forkhead/imunologia , Microbioma Gastrointestinal/imunologia , Intestinos/microbiologia , Síndrome de Sjogren/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Adolescente , Adulto , Idoso , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Índice de Massa Corporal , Estudos de Casos e Controles , Disbiose/genética , Disbiose/imunologia , Disbiose/patologia , Fezes/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Fatores de Transcrição Forkhead/genética , Variação Genética , Humanos , Inflamação , Interleucina-10/genética , Interleucina-10/imunologia , Intestinos/imunologia , Pessoa de Meia-Idade , Permeabilidade , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Linfócitos T Reguladores/microbiologiaRESUMO
Obesity is considered an important factor that increases the risk of colorectal cancer (CRC). So far, the association of gut microbiota with both obesity and cancer has been described independently. Nevertheless, a specific obesity-related microbial profile linked to CRC development has not been identified. The aim of this study was to determine the gut microbiota composition in fecal samples from CRC patients with (OB-CRC) and without obesity (L-CRC) compared to the microbiota profile present in non-obese healthy controls (L-HC), in order to unravel the possible relationship between gut microbiota and microbial-derived metabolite trimethylamine N-oxide (TMAO), the inflammatory status, and the intestinal permeability in the context of obesity-associated CRC. The presence of obesity does not induce significant changes in the diversity and richness of intestinal bacteria of CRC patients. Nevertheless, OB-CRC patients display a specific gut microbiota profile characterized by a reduction in butyrate-producing bacteria and an overabundance of opportunistic pathogens, which in turn could be responsible, at least in part, for the higher levels of proinflammatory cytokine IL-1ß, the deleterious bacterial metabolite TMAO, and gut permeability found in these patients. These results suggest a possible role of obesity-related gut microbiota in the development of CRC, which could give new clues for the design of new diagnostic tools for CRC prevention.
Assuntos
Bactérias/isolamento & purificação , Neoplasias Colorretais/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/microbiologia , Obesidade/microbiologia , Idoso , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biomarcadores , Índice de Massa Corporal , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Disbiose/complicações , Disbiose/patologia , Disbiose/fisiopatologia , Fezes/microbiologia , Feminino , Haptoglobinas , Humanos , Inflamação/sangue , Mediadores da Inflamação/sangue , Interleucinas/sangue , Masculino , Metagenoma , Metilaminas/efeitos adversos , Metilaminas/sangue , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Permeabilidade , Precursores de Proteínas/sangueRESUMO
BACKGROUND: DNA methylation is one of the epigenetic mechanisms that regulate gene expression. DNA methylation may be modified by environmental and nutritional factors. Thus, epigenetics could potentially provide a mechanism to explain the etiology of metabolic disorders, such as metabolic syndrome (MetS). The aim of this study was to analyze the level of DNA methylation of several lipoprotein lipase (LPL)-promoter-CpG dinucleotides in a CpG island region and relate this to the gene and protein expression levels in human visceral adipose tissue (VAT) from individuals with and without MetS. METHODS: VAT samples were collected from laparoscopic surgical patients without and with MetS, and levels of LPL mRNA, LPL protein, and LPL DNA methylation were measured by qPCR, western blot, and pyrosequencing. Biochemical and anthropometric variables were analyzed. Individuals included in a subset underwent a dietary fat challenge test, and levels of postprandial triglycerides were determined. RESULTS: We found higher levels of DNA methylation in MetS patients but lower gene expression and protein levels. There was a negative association between LPL methylation and LPL gene expression. We found a positive association between LPL methylation status and abnormalities of the metabolic profile and basal and postprandial triglycerides, whereas LPL gene expression was negatively associated with these abnormalities. CONCLUSIONS: We demonstrate that LPL methylation may be influenced by the degree of metabolic disturbances and could be involved in triglyceride metabolism, promoting hypertriglyceridemia and subsequent associated disorders, such as MetS.
Assuntos
Metilação de DNA , Gordura Intra-Abdominal/enzimologia , Lipase Lipoproteica/metabolismo , Síndrome Metabólica/sangue , Triglicerídeos/sangue , Adulto , Western Blotting , Índice de Massa Corporal , Estudos de Casos e Controles , Gorduras na Dieta/administração & dosagem , Epigênese Genética , Humanos , Lipase Lipoproteica/genética , Síndrome Metabólica/enzimologia , Síndrome Metabólica/genética , Reação em Cadeia da Polimerase , Período Pós-Prandial , Regiões Promotoras Genéticas , RNA Mensageiro/genéticaRESUMO
INTRODUCTION: Diabetes and cardiovascular disease are risk factors for erectile dysfunction (ED). Selective inhibitors of the type 5 phosphodiesterase are the first option for treating ED. However, it is unknown why there are patients with low response to this treatment. Polymorphisms in the PDE5A gene may influence the response to PDE5 inhibitors treatment. AIM: The aim of this study is to analyze the relationship between PDE5A polymorphisms, diabetes, and the efficacy of sildenafil treatment. METHODS: A Spanish prospective cohort of 170 Caucasian male patients diagnosed with ED and ischemic heart disease treated with angioplasty was studied. MAIN OUTCOME MEASURES: ED was evaluated according to the 5-item version of the International Index for Erectile Function before and after treatment with sildenafil 50 mg. The gene sequence of the PDE5A gene was analyzed for the presence of rs12646525 and rs3806808 polymorphisms. Glucose and glycosylated hemoglobin levels were measured in blood serum samples. The relationship between treatment response, genotype, and glycemic status was analyzed. RESULTS: Patients with G-allele of rs3806808 polymorphism showed a worse response to the treatment compared to TT-homozygote patients. Nondiabetic G-allele carriers showed a worse treatment response than TT-homozygotes patients. These differences were not seen in diabetic patients. There were no significant differences in treatment response according to the rs12646525 polymorphism in total population or according to the glycemic status. Logistic regression analysis showed that nondiabetic carriers of the major allele of both the rs12646525 and rs3806808 polymorphism had a significantly higher likelihood to respond to the treatment than diabetic patients carriers of the minor allele (P < .05). CONCLUSION: The response to sildenafil treatment depends on polymorphisms in the PDE5A gene and the glycemic status of the patients.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/genética , Inibidores da Fosfodiesterase 5/uso terapêutico , Citrato de Sildenafila/uso terapêutico , Idoso , Doenças Cardiovasculares/induzido quimicamente , Humanos , Masculino , Pessoa de Meia-Idade , Ereção Peniana/efeitos dos fármacos , Piperazinas/uso terapêutico , Polimorfismo Genético , Estudos Prospectivos , Fatores de Risco , Resultado do TratamentoRESUMO
The discovery of biomarkers of intake in nutritional epidemiological studies is essential in establishing an association between dietary intake (considering their bioavailability) and diet-related risk factors for diseases. The aim is to study urine and plasma phenolic and microbial profile by targeted metabolomics approach in a wine intervention clinical trial for discovering and evaluating food intake biomarkers. High-risk male volunteers (n = 36) were included in a randomized, crossover intervention clinical trial. After a washout period, subjects received red wine or gin, or dealcoholized red wine over four weeks. Fasting plasma and 24-h urine were collected at baseline and after each intervention period. A targeted metabolomic analysis of 70 host and microbial phenolic metabolites was performed using ultra performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). Metabolites were subjected to stepwise logistic regression to establish prediction models and received operation curves were performed to evaluate biomarkers. Prediction models based mainly on gallic acid metabolites, obtained sensitivity, specificity and area under the curve (AUC) for the training and validation sets of between 91 and 98% for urine and between 74 and 91% for plasma. Resveratrol, ethylgallate and gallic acid metabolite groups in urine samples also resulted in being good predictors of wine intake (AUC>87%). However, lower values for metabolites were obtained in plasma samples. The highest correlations between fasting plasma and urine were obtained for the prediction model score (r = 0.6, P<0.001), followed by gallic acid metabolites (r = 0.5-0.6, P<0.001). This study provides new insights into the discovery of food biomarkers in different biological samples.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is a growing health problem due to the increased obesity rates, among other factors. In its more severe stage (NASH), inflammation, hepatocellular ballooning and fibrosis are present in the liver, which can further evolve to total liver dysfunction or even hepatocarcinoma. As a metabolic disease, is associated to environmental factors such as diet and lifestyle conditions, which in turn can influence the epigenetic landscape of the cells, affecting to the gene expression profile and chromatin organization. In this study we performed ATAC-sequencing and RNA-sequencing to interrogate the chromatin status of liver biopsies in subjects with and without NASH and its effects on RNA transcription and NASH etiology. NASH subjects showed transcriptional downregulation for lipid and glucose metabolic pathways (e.g., ABC transporters, AMPK, FoxO or insulin pathways). A total of 229 genes were differentially enriched (ATAC and mRNA) in NASH, which were mainly related to lipid transport activity, nuclear receptor-binding, dicarboxylic acid transporter, and PPARA lipid regulation. Interpolation of ATAC data with known liver enhancer regions showed differential openness at 8 enhancers, some linked to genes involved in lipid metabolism, (i.e., FASN) and glucose homeostasis (i.e., GCGR). In conclusion, the chromatin landscape is altered in NASH patients compared to patients without this liver condition. This alteration might cause mRNA changes explaining, at least partially, the etiology and pathophysiology of the disease.
Assuntos
Epigênese Genética , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Feminino , Metabolismo dos Lipídeos/genética , Pessoa de Meia-Idade , Cromatina/metabolismo , Cromatina/genética , RNA/genética , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão GênicaRESUMO
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely tied to obesity. The degree ranges from steatosis (MASL) and steatohepatitis (MASH) to liver cirrhosis. PCSK9 controls cholesterol and lipid particle transport to the liver. PCSK9 might interfere with the pathophysiology of MASLD and bariatric surgery (BS) outcomes of patients with MASLD. OBJECTIVES: Evaluate the relationship between serum and hepatic PCSK9 levels with the degree of MASLD and the metabolic outcome of BS. SETTING: University Hospital, Spain. METHODS: A total of 110 patients with obesity undergoing BS were classified according to liver histology as controls, MAS, and MASH. PCSK9 levels in serum were measured before and 6 months after BS using enzyme-linked immunosorbent assay. PCSK9 protein and mRNA levels in liver tissue were analyzed by immunohistochemistry and reverse transcriptase-polymerase chain reaction, respectively. RESULTS: Hepatic PCSK9 protein levels were diminished in MASL and MASH compared with patients without MASLD and showed a strong negative association with MASLD severity scores. Liver PCSK9 mRNA was higher in MASH compared with controls and MASL and showed positive associations with MASLD severity scores. There were no differences in serum PCSK9 pre or postBS between the groups. Pre- and postsurgery serum PCSK9 positively correlated with cholesterol fold-changes and body mass index (BMI), cholesterol, and low-density lipoprotein -cholesterol fold-changes, respectively. PCSK9 fold-change positively correlated with BMI changes and was the sole variable explaining BMI fold changes in a regression model. CONCLUSIONS: PCSK9 mRNA and protein in the liver might be associated with the degree of MASLD. Serum PCSK9 may be associated with cholesterol and/or BMI fold changes. Serum changes of PCSK9 after BS could explain BMI loss outcome.
Assuntos
Cirurgia Bariátrica , Fígado Gorduroso , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Fígado Gorduroso/metabolismo , Adulto , Obesidade Mórbida/cirurgia , Obesidade Mórbida/complicações , Resultado do Tratamento , Fígado/metabolismo , Fígado/patologiaRESUMO
Background and Objective: Lung cancer stands as the main cause of cancer-related deaths worldwide. With the advent of immunotherapy and the discovery of targetable oncogenic driver genes, although prognosis has changed in the last few years, survival rates remain dismal for most patients. This emphasizes the urgent need for new strategies that could enhance treatment in precision medicine. The role of the microbiota in carcinogenesis constitutes an evolving landscape of which little is known. It has been suggested these microorganisms may influence in responses, resistance, and adverse effects to cancer treatments, particularly to immune checkpoint blockers. However, evidence on the impact of microbiota composition in oncogene-addicted tumors is lacking. This review aims to provide an overview of the relationship between microbiota, daily habits, the immune system, and oncogene-addicted tumors, focusing on lung cancer. Methods: A PubMed and Google Scholar search from 2013 to 2024 was conducted. Relevant articles were reviewed in order to guide our research and generate hypothesis of clinical applicability. Key Content and Findings: Microbiota is recognized to participate in immune reprogramming, fostering inflammatory, immunosuppressive, or anti-tumor responses. Therefore, identifying the microbiota that impact response to treatment and modulating its composition by interventions such as dietary modifications, probiotics or antibiotics, could potentially yield better outcomes for cancer patients. Additionally, targeted therapies that modulate molecular signaling pathways may impact both immunity and microbiota. Understanding this intricate interplay could unveil new therapeutic strategies. Conclusions: By comprehending how microbiota may influence efficacy of targeted therapies, even though current evidence is scarce, we may generate interesting hypotheses that could improve clinical practice.
RESUMO
CONTEXT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the intracellular lipid accumulation in hepatocytes. Excess caloric intake and high-fat diets are considered to significantly contribute to MASLD development. OBJECTIVE: To evaluate the hepatic and serum fatty acid (FA) composition in patients with different stages of MASLD, and their relationship with FA dietary intake and MASLD-related risk factors. METHODS: This was a case-control study in patients with obesity undergoing bariatric surgery at a university hospital between January 2020 and December 2021. Participants were distributed in 3 groups: no MASLD (n = 26), steatotic liver disease (n = 33), and metabolic dysfunction-associated steatohepatitis (n = 32). Hepatic and serum FA levels were determined by gas chromatography-mass spectrometry. Nutritional status was evaluated using validated food frequency questionnaires. The hepatic expression of genes involved in FA metabolism was analyzed by reverse transcription quantitative polymerase chain reaction. RESULTS: The hepatic, but not serum, FA profiles were significantly altered in patients with MASLD compared with those without MASLD. No differences were observed in FA intake between the groups. Levels of C16:0, C18:1, and the C18:1/C18:0 ratio were higher, while C18:0 levels and C18:0/C16:0 ratio were lower in patients with MASLD, being significantly different between the 3 groups. Hepatic FA levels and ratios correlated with histopathological diagnosis and other MASLD-related parameters. The expression of genes involved in the FA metabolism was upregulated in patients with MASLD. CONCLUSION: Alterations in hepatic FA levels in MASLD patients were due to enhancement of de novo lipogenesis in the liver.
Assuntos
Ácidos Graxos , Fígado Gorduroso , Lipidômica , Fígado , Obesidade , Humanos , Masculino , Feminino , Estudos de Casos e Controles , Adulto , Pessoa de Meia-Idade , Fígado/metabolismo , Fígado/patologia , Obesidade/metabolismo , Obesidade/complicações , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Metabolismo dos Lipídeos , Cirurgia BariátricaRESUMO
BACKGROUND: A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS: A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS: The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS: This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.
Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Diabetes Mellitus Tipo 1 , Trato Gastrointestinal/microbiologia , Estudos de Casos e Controles , Criança , Eletroforese em Gel de Gradiente Desnaturante , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenoma , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Radiation-induced mucositis is the most common, debilitating and painful acute toxicity associated with active treatment in head and neck cancer area, severely affecting more than 65% of patients. Oral microbiota significantly changes during cancer therapy and appears to be involved on its pathophysiology. This review aims to present a comprehensive update of new etiopathogenic factors and treatments that may decrease the incidence of mucositis, mainly modifications of dietary interventions to modify microbiome. Despite advances in recent years, its management is mainly symptomatic opioid-based with variable results on different substances analyzed for its prevention. Immunonutrition seems to play a significant role, particularly the supplementation of compounds such as fatty acids, polyphenols or selected probiotics have shown to promote commensal bacteria diversity and reduced incidence of ulcerative mucositis. Modification of the microbiome is a promising preventive treatment for mucositis although its evidence is still scarce. Large studies are needed to demonstrate the efficacy of interventions on microbiome and its clinical impact on radiation-induced mucositis.
Assuntos
Neoplasias de Cabeça e Pescoço , Microbiota , Mucosite , Lesões por Radiação , Estomatite , Humanos , Estomatite/etiologia , Estomatite/prevenção & controle , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/complicações , Lesões por Radiação/terapia , Lesões por Radiação/prevenção & controleRESUMO
Melatonin is a molecule with different antitumor actions in breast cancer and has been described as an inhibitor of vascular endothelial growth factor (VEGF). Despite the recognition of the key role exerted by VEGF in tumor angiogenesis, limitations arise when developing models to test new antiangiogenic molecules. Thus, the aim of this study was to develop rapid, economic, high capacity and easy handling angiogenesis assays to test the antiangiogenic effects of melatonin and demonstrate its most effective dose to neutralize and interfere with the angiogenic sprouting effect induced by VEGF and MCF-7. To perform this, 3D endothelial cell (HUVEC) spheroids and a chicken embryo chorioallantoic membrane (CAM) assay were used. The results showed that VEGF and MCF-7 were able to stimulate the sprouting of the new vessels in 3D endothelial spheroids and the CAM assay, and that melatonin had an inhibitory effect on angiogenesis. Specifically, as the 1 mM pharmacological dose was the only effective dose able to inhibit the formation of ramifications around the alginate in the CAM assay model, this inhibition was shown to occur in a dose-dependent manner. Taken together, these techniques represent novel tools for the development of antiangiogenic molecules such as melatonin, with possible implications for the therapy of breast cancer.
Assuntos
Melatonina , Neoplasias , Animais , Embrião de Galinha , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Membrana Corioalantoide/metabolismo , Melatonina/uso terapêutico , Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/metabolismo , Células Endoteliais , Indutores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana , Neoplasias/tratamento farmacológicoRESUMO
Essential oils sourced from herbs commonly used in the Mediterranean diet have demonstrated advantageous attributes as nutraceuticals and prebiotics within a model of severe cardiometabolic disorder. The primary objective of this study was to assess the influences exerted by essential oils derived from thyme (Thymus vulgaris) and oregano (Origanum vulgare) via a comprehensive multi-omics approach within a gnotobiotic murine model featuring colonic microbiota acquired from patients diagnosed with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM). Our findings demonstrated prebiotic and potential antioxidant effects elicited by these essential oils. We observed a substantial increase in the relative abundance of the Lactobacillus genus in the gut microbiota, accompanied by higher levels of short-chain fatty acids and a reduction in trimethylamine N-oxide levels and protein oxidation in the plasma. Moreover, functional enrichment analysis of the cardiac tissue proteome unveiled an over-representation of pathways related to mitochondrial function, oxidative stress, and cardiac contraction. These findings provide compelling evidence of the prebiotic and antioxidant actions of thyme- and oregano-derived essential oils, which extend to cardiac function. These results encourage further investigation into the promising utility of essential oils derived from herbs commonly used in the Mediterranean diet as potential nutraceutical interventions for mitigating chronic diseases linked to CAD and T2DM.
RESUMO
The aim of this study was to assess the effect of lipodystrophy (LD) associated to metabolic syndrome (MS) on oxidative stress and inflammation in a cohort of 243 HIV-infected patients with MS, all of them under three different antiretroviral regimens. We collected immunovirological, biochemical and metabolic data, as well as anthropometric measurements. In addition, cardiovascular risk was also assessed by means of Atherogenic Index of Plasma (API) and Framingham Risk Score. The MS-LD patient set was characterized by a lower initial lymphocyte CD4 count and CD4/CD8 ratio and a higher initial viral load than the group without LD. We also found worse lipidic and glycaemic profiles (with lower HDL-cholesterol and higher triglyceride and glucose levels) in the MS-LD group. BMI, systolic blood pressure and Framingham score were significantly increased compared to MS-Non LD. In addition, patients with MS and LD had significantly higher levels of carbonylated proteins, lipid peroxidation, IL-6 and IL-8, as well as a significant decrease in the levels of leptin, adiponectin and antioxidant activities of catalase, super oxide dismutase and glutathione associated enzymes. In MS-LD HIV-1 patients, a significant negative correlation was found between Framingham Risk Score and the antioxidant biomarkers, however a positive association was found between API and protein-C reactive and carbonylated proteins. Segregating by ART, the above-mentioned conditions were worse within the MS-LD group whose treatment contained protease inhibitors, such as lopinavir. In conclusion, HIV-1 infected patients treated for at least six months, especially with regimens including PIs, showed a worsening of inflammatory process and oxidative stress.
Assuntos
Infecções por HIV , HIV-1 , Lipodistrofia , Síndrome Metabólica , Antioxidantes , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Inflamação/complicações , Lipodistrofia/complicações , Síndrome Metabólica/complicações , Estresse OxidativoRESUMO
Ischemic heart disease (IHD) and type-2 diabetes mellitus (T2DM) remain major health problems worldwide and commonly coexist in individuals. Gut microbial metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs), have been linked to cardiovascular and metabolic diseases. Previous studies have reported dysbiosis in the gut microbiota of these patients and the prebiotic effects of some components of the Mediterranean diet. Essential oil emulsions of savory (Satureja hortensis), parsley (Petroselinum crispum) and rosemary (Rosmarinus officinalis) were assessed as nutraceuticals and prebiotics in IHD and T2DM. Humanized mice harboring gut microbiota derived from that of patients with IHD and T2DM were supplemented with L-carnitine and orally treated with essential oil emulsions for 40 days. We assessed the effects on gut microbiota composition and abundance, microbial metabolites and plasma markers of cardiovascular disease, inflammation and oxidative stress. Our results showed that essential oil emulsions in mice supplemented with L-carnitine have prebiotic effects on beneficial commensal bacteria, mainly Lactobacillus genus. There was a decrease in plasma TMAO and an increase in fecal SCFAs levels in mice treated with parsley and rosemary essential oils. Thrombomodulin levels were increased in mice treated with savory and parsley essential oils. While mice treated with parsley and rosemary essential oils showed a decrease in plasma cytokines (INFÉ£, TNFα, IL-12p70 and IL-22); savory essential oil was associated with increased levels of chemokines (CXCL1, CCL2 and CCL11). Finally, there was a decrease in protein carbonyls and pentosidine according to the essential oil emulsion. These results suggest that changes in the gut microbiota induced by essential oils of parsley, savory and rosemary as prebiotics could differentially regulate cardiovascular and metabolic factors, which highlights the potential of these nutraceuticals for reducing IHD risk in patients affected by T2DM.