Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599102

RESUMO

Listeriolysin S (LLS) is a thiazole/oxazole-modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.


Assuntos
Bacteriocinas/metabolismo , Membrana Celular/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/metabolismo , Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo
2.
J Infect Dis ; 225(6): 1005-1010, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32582947

RESUMO

The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.


Assuntos
Listeria monocytogenes , Listeriose , Proteínas de Bactérias , Citoplasma , Citosol , Proteínas Hemolisinas , Humanos , Listeriose/microbiologia , Vacúolos/microbiologia , Vacúolos/fisiologia
3.
Annu Rev Microbiol ; 71: 263-280, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886688

RESUMO

Noncoding RNAs (ncRNAs) regulating virulence have been identified in most pathogens. This review discusses RNA-mediated mechanisms exploited by bacterial pathogens to successfully infect and colonize their hosts. It discusses the most representative RNA-mediated regulatory mechanisms employed by two intracellular [Listeria monocytogenes and Salmonella enterica serovar Typhimurium (S. Typhimurium)] and two extracellular (Vibrio cholerae and Staphylococcus aureus) bacterial pathogens. We review the RNA-mediated regulators (e.g., thermosensors, riboswitches, cis- and trans-encoded RNAs) used for adaptation to the specific niches colonized by these bacteria (intestine, blood, or the intracellular environment, for example) in the framework of the specific pathophysiological aspects of the diseases caused by these microorganisms. A critical discussion of the newest findings in the field of bacterial ncRNAs shows how examples in model pathogens could pave the way for the discovery of new mechanisms in other medically important bacterial pathogens.


Assuntos
Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/patogenicidade , RNA Bacteriano/metabolismo , Fatores de Virulência/biossíntese , Animais , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Humanos , RNA Bacteriano/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Virulência , Fatores de Virulência/genética
4.
BMC Vet Res ; 18(1): 12, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042502

RESUMO

BACKGROUND: Salmonellosis is one of the most important food-borne zoonotic disease affecting both animals and humans. The objective of the present study was to identify gastrointestinal (GI) lactic acid bacteria (LAB) of canine-origin from Salmonella-negative dogs' faeces able to inhibit monophasic Salmonella Typhimurium previously isolated from dogs' faeces, in order to be used as a potential probiotic in pet nutrition. RESULTS: Accordingly, 37 LAB were isolated from Salmonella-negative dogs' faeces and tested against monophasic S. Typhimurium using the spot on lawn method out of which 7 strains showed an inhibition halo higher than 2.5 cm. These 7 strains were also tested with the co-culture method and one showed the greatest inhibition value (p < 0.05). Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology and designated as Ligilactobacillus salivarius (L. salivarius). LAB from Salmonella-positive dogs were also identified and none was the selected strain. Finally, to identify the mechanism of inhibition of L. salivarius, the supernatant was analyzed, and a dose response effect was observed. CONCLUSIONS: It is concluded that the canine-origin L. salivarius, could possess some in vitro functional attributes of a candidate probiotic and could prevent monophasic S. Typhimurium colonization or inhibit its activity if the infection occurs.


Assuntos
Cães/microbiologia , Microbioma Gastrointestinal , Lactobacillales , Probióticos , Animais , Lactobacillales/isolamento & purificação , RNA Ribossômico 16S/genética , Salmonella typhimurium
5.
Environ Microbiol ; 23(12): 7617-7631, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34863016

RESUMO

Studies have shown that ruminants constitute reservoirs of Listeria monocytogenes, but little is known about the epidemiology and genetic diversity of this pathogen within farms. Here we conducted a large-scale longitudinal study to monitor Listeria spp. in 19 dairy farms during three consecutive seasons (N = 3251 samples). L. innocua was the most prevalent species, followed by L. monocytogenes. Listeria monocytogenes was detected in 52.6% of farms and more frequently in cattle (4.1%) and sheep (4.5%) than in goat farms (0.2%). Lineage I accounted for 69% of L. monocytogenes isolates. Among animal samples, the most prevalent sublineages (SL) and clonal complexes (CC) were SL1/CC1, SL219/CC4, SL26/CC26 and SL87/CC87, whereas SL666/CC666 was most prevalent in environmental samples. Sixty-one different L. monocytogenes cgMLST types were found, 28% common to different animals and/or surfaces within the same farm and 21% previously reported elsewhere in the context of food and human surveillance. Listeria monocytogenes prevalence was not affected by farm hygiene but by season: higher prevalence was observed during winter in cattle, and during winter and spring in sheep farms. Cows in their second lactation had a higher probability of L. monocytogenes faecal shedding. This study highlights dairy farms as a reservoir for hypervirulent L. monocytogenes.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Bovinos , Células Clonais , Fazendas , Feminino , Listeriose/epidemiologia , Estudos Longitudinais , Ruminantes , Ovinos
6.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397708

RESUMO

Listeria monocytogenes is a major human and animal foodborne pathogen. However, data from environmental reservoirs remain scarce. Here, we used whole-genome sequencing to characterize Listeria species isolates recovered over 1 year from wild animals in their natural habitats in Spain. Three different Listeria spp. (L. monocytogenes [n = 19], Listeria ivanovii subsp. londoniensis [n = 4], and Listeria innocua [n = 3]) were detected in 23 animal tonsils (9 deer, 14 wild boars) and 2 feeding troughs. No Listeria species was detected in feces. L. monocytogenes was detected in tonsils of 44.4% (8 out of 18) of deer and 40.7% (11 out of 27) of wild boars. L. monocytogenes isolates belonged to 3 different core genome multilocus sequence typing (cgMLST) types (CTs) of 3 distinct sublineages (SL1, SL387, and SL155) from lineages I and II. While cgMLST type L1-SL1-ST1-CT5279 (IVb; clonal complex 1 [CC1]) occurred only in one animal, types L1-SL387-ST388-CT5239 (IVb; CC388) and L2-SL155-ST155-CT1170 (IIa; CC155) were retrieved from multiple animals. In addition, L1-SL387-ST388-CT5239 (IVb; CC388) isolates were collected 1 year apart, revealing their long-term occurrence within the animal population and/or environmental reservoir. The presence of identical L. monocytogenes strains in deer and wild boars suggests contamination from a common food or environmental source, although interhost transmission cannot be excluded. Pathogenicity islands LIPI-1, LIPI-3, and LIPI-4 were present in 100%, 5%, and 79% of the L. monocytogenes isolates, respectively, and all L. monocytogenes lineage II isolates (n = 3) carried SSI-1 stress islands. This study highlights the need for monitoring L. monocytogenes environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.IMPORTANCEListeria monocytogenes is a foodborne bacterial pathogen responsible for listeriosis. Whole-genome sequencing has been extensively used in public health and food industries to characterize circulating Listeria isolates, but genomic data on isolates occurring in natural environments and wild animals are still scarce. Here, we show that wild animals carry pathogenic Listeria and that the same genotypes can be found at different time points in different host species. This work highlights the need of Listeria species monitoring of environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.


Assuntos
Cervos/microbiologia , Listeria/genética , Listeriose/microbiologia , Tonsila Palatina/microbiologia , Sus scrofa/microbiologia , Animais , Fezes/microbiologia , Genoma Bacteriano , Listeria/isolamento & purificação , Listeriose/veterinária , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do Genoma
7.
Int J Syst Evol Microbiol ; 70(11): 5868-5879, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33016862

RESUMO

In the context of a study on the occurrence of Listeria species in an animal farm environment in Valencia, Spain, six Listeria-like isolates could not be assigned to any known species. Phylogenetic analysis based on the 16S rRNA gene and on 231 Listeria core genes grouped these isolates in a monophyletic clade within the genus Listeria, with highest similarity to Listeria thailandensis. Whole-genome sequence analyses based on in silico DNA-DNA hybridization, the average nucleotide blast and the pairwise amino acid identities against all currently known Listeria species confirmed that these isolates constituted a new taxon within the genus Listeria. Phenotypically, these isolates differed from other Listeria species mainly by the production of acid from inositol, the absence of acidification in presence of methyl α-d-glucoside, and the absence of α-mannosidase and nitrate reductase activities. The name Listeria valentina sp. nov. is proposed for this novel species, and the type strain is CLIP 2019/00642T (=CIP 111799T=DSM 110544T).


Assuntos
Água Potável/microbiologia , Fezes/microbiologia , Listeria/classificação , Filogenia , Ovinos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fazendas , Ácidos Graxos/química , Listeria/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Microbiologia da Água
8.
Proc Natl Acad Sci U S A ; 113(20): 5706-11, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140611

RESUMO

Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence.


Assuntos
Bacteriocinas/metabolismo , Microbioma Gastrointestinal , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Animais , Epidemias , Feminino , Interações Hospedeiro-Patógeno , Humanos , Listeria monocytogenes/patogenicidade , Listeriose/epidemiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Virulência
9.
Vet Res ; 49(1): 13, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409521

RESUMO

Most human listeriosis outbreaks are caused by Listeria monocytogenes evolutionary lineage I strains which possess four exotoxins: a phosphatidylinositol-specific phospholipase C (PlcA), a broad-range phospholipase C (PlcB), listeriolysin O (LLO) and listeriolysin S (LLS). The simultaneous contribution of these molecules to virulence has never been explored. Here, the importance of these four exotoxins of an epidemic lineage I L. monocytogenes strain (F2365) in virulence was assessed in chicken embryos infected in the allantoic cavity. We show that LLS does not play a role in virulence while LLO is required to infect and kill chicken embryos both in wild type transcriptional regulator of virulence PrfA (PrfAWT) and constitutively active PrfA (PrfA*) backgrounds. We demonstrate that PlcA, a toxin previously considered as a minor virulence factor, played a major role in virulence in a PrfA* background. Interestingly, GFP transcriptional fusions show that the plcA promoter is less active than the hly promoter in vitro, explaining why the contribution of PlcA to virulence could be observed more importantly in a PrfA* background. Together, our results suggest that PlcA might play a more important role in the infectious lifecycle of L. monocytogenes than previously thought, explaining why all the strains of L. monocytogenes have conserved an intact copy of plcA in their genomes.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/farmacologia , Exotoxinas/farmacologia , Proteínas de Choque Térmico/farmacologia , Proteínas Hemolisinas/farmacologia , Listeria monocytogenes/patogenicidade , Fosfolipases/toxicidade , Fatores de Virulência/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Embrião de Galinha , Listeria monocytogenes/enzimologia , Virulência , Fatores de Virulência/genética
10.
PLoS Genet ; 10(10): e1004765, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25356775

RESUMO

Listeria monocytogenes is a bacterial pathogen whose genome encodes many cell wall proteins that bind covalently to peptidoglycan. Some members of this protein family have a key role in virulence, and recent studies show that some of these, such as Lmo0514, are upregulated in bacteria that colonize eukaryotic cells. The regulatory mechanisms that lead to these changes in cell wall proteins remain poorly characterized. Here we studied the regulation responsible for increased Lmo0514 protein levels in intracellular bacteria. The amount of this protein increased markedly in intracellular bacteria (>200-fold), which greatly exceeded the increase in lmo0514 transcript levels (∼6-fold). Rapid amplification of 5'-cDNA ends (RACE) assays identified two lmo0514 transcripts with 5'-untranslated regions (5'-UTR) of 28 and 234 nucleotides. The transcript containing the long 5'-UTR is upregulated by intracellular bacteria. The 234-nucleotide 5'-UTR is also the target of a small RNA (sRNA) denoted Rli27, which we identified by bioinformatics analysis as having extensive base pairing potential with the long 5'-UTR. The interaction is predicted to increase accessibility of the Shine-Dalgarno sequence occluded in the long 5'-UTR and thus to promote Lmo0514 protein production inside the eukaryotic cell. Real-time quantitative PCR showed that Rli27 is upregulated in intracellular bacteria. In vivo experiments indicated a decrease in Lmo0514 protein levels in intracellular bacteria that lacked Rli27. Wild-type Lmo0514 levels were restored by expressing the wild-type Rli27 molecule but not a mutated version unable to interact with the lmo0514 long 5'-UTR. These findings emphasize how 5'-UTR length affects regulation by defined sRNA. In addition, they demonstrate how alterations in the relative abundance of two transcripts with distinct 5'-UTR confine the action of an sRNA for a specific target to bacteria that occupy the intracellular eukaryotic niche.


Assuntos
Regiões 5' não Traduzidas/genética , Parede Celular/metabolismo , Listeria monocytogenes/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Sequência de Bases , Parede Celular/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Listeria monocytogenes/patogenicidade , RNA Mensageiro/genética , Pequeno RNA não Traduzido/metabolismo , Virulência/genética
11.
Appl Environ Microbiol ; 82(1): 211-7, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497455

RESUMO

Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a ß-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface ß-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes.


Assuntos
Citoplasma/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Vacúolos/microbiologia , Proteínas de Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Humanos , Listeria/enzimologia , Listeria/metabolismo , Listeria monocytogenes/enzimologia , Microscopia de Fluorescência , beta-Lactamases/metabolismo
12.
Vet Res ; 46: 34, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25889072

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) induces a weak immune response enabling it to persist in different organs of infected pigs. This has been attributed to the ability of PRRSV to influence the induction of cytokine responses. In this study, we investigated the cytokine transcriptional profiles in different compartments of the mediastinal lymph node of pigs infected with three genotype 1 PRRSV strains of differing pathogenicity: the low virulence prototype Lelystad virus (LV), and UK field strain 215-06 and the highly virulent subtype 3 SU1-Bel isolate from Belarus. We have used a combination of laser capture micro-dissection (LCM) followed by real time quantitative PCR (RT-qPCR) and immunohistochemical (IHC) detection of immune cell markers (CD3, CD79a and MAC387) and RT-qPCR quantification of PRRSV and cytokine transcripts. Compared to mock infected pigs, we found a significant downregulation of TNF-α and IFN-α in follicular and interfollicular areas of the mediastinal lymph node from 3 days post-infection (dpi) in animals infected with all three strains. This was accompanied by a transient B cell depletion and T cell and macrophage infiltration in the follicles together with T cell depletion in the interfollicular areas. A delayed upregulation of IFN-γ and IL-23p19 was observed mainly in the follicles. The PRRSV load was higher in all areas and time-points studied in the animals infected with the SU1-Bel strain. This paper describes the first application of LCM to study the cytokine transcript profiles and virus distribution in different compartments of the lymph node of pigs.


Assuntos
Citocinas/genética , Linfonodos/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transcriptoma , Animais , Citocinas/metabolismo , Mediastino/virologia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , RNA Viral/genética , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Suínos , Virulência
13.
Int J Med Microbiol ; 304(3-4): 393-404, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24572033

RESUMO

Many Gram-positive bacterial pathogens use surface proteins covalently anchored to the peptidoglycan to cause disease. Bacteria of the genus Listeria have the largest number of surface proteins of this family. Every Listeria genome sequenced to date contains more than forty genes encoding surface proteins bearing anchoring-domains with an LPXTG motif that is recognized for covalent linkage to the peptidoglycan. About one-third of these proteins are present exclusively in pathogenic Listeria species, with some of them acting as adhesins or invasins that promote bacterial entry into eukaryotic cells. Here, we investigated two LPXTG surface proteins of the pathogen L. monocytogenes, Lmo1413 and Lmo2085, of unknown function and absent in non-pathogenic Listeria species. Lack of these two proteins does not affect bacterial adhesion or invasion of host cells using in vitro infection models. However, expression of Lmo1413 promotes entry of the non-invasive species L. innocua into non-phagocytic host cells, an effect not observed with Lmo2085. Moreover, overproduction of Lmo1413, but not Lmo2085, increases the invasion rate in non-phagocytic eukaryotic cells of an L. monocytogenes mutant deficient in the acting-binding protein ActA. Unexpectedly, production of full-length Lmo1413 and InlA exhibited opposite trends in a high percentage of L. monocytogenes isolates obtained from different sources. The idea of Lmo1413 playing a role as a new auxiliary invasin was also sustained by assays revealing that purified Lmo1413 binds to mucin via its MucBP domains. Taken together, these data indicate that Lmo1413, which we rename LmiA, for Listeria-mucin-binding invasin-A, may promote interaction of bacteria with adhesive host protective components and, in this manner, facilitate bacterial entry.


Assuntos
Adesinas Bacterianas/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Membrana/metabolismo , Mucinas/metabolismo , Adesinas Bacterianas/genética , Motivos de Aminoácidos , Animais , Aderência Bacteriana , Linhagem Celular , Modelos Animais de Doenças , Endocitose , Deleção de Genes , Humanos , Listeria monocytogenes/genética , Listeriose/microbiologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Ligação Proteica
14.
Vet Microbiol ; 293: 110086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615477

RESUMO

Listeriosis is a zoonotic disease caused by Listeria monocytogenes and Listeria ivanovii. The genus Listeria currently includes 27 recognized species and is found throughout the environment. The number of systematic studies on antimicrobial resistance in L. monocytogenes isolates from domestic farms using antimicrobial substances is limited. Importantly, dairy ruminant farms are reservoir of hypervirulent lineage I L. monocytogenes isolates, previously associated with human clinical cases. Considering that the classes of antibiotics used in food-producing domestic animals are frequently the same or closely related to those used in human medicine, studies about the impact of antibiotic use on the acquisition of antibiotic resistance in Listeria spp. in domestic animal farms are, therefore, of high importance. Here, susceptibility to 25 antibiotics was determined. Eighty-one animal-related, 35 food and 21 human pathogenic Listeria spp. isolates and 114 animal-related non-pathogenic Listeria spp. isolates were tested. Whole genome sequencing data was used for molecular characterization. Regarding L. monocytogenes, 2 strains from the clinical-associated linage I showed resistance to erythromycin, both related to dairy ruminants. Acquired resistance to one antibiotic was exhibited in 1.5% of L. monocytogenes isolates compared with 14% of non-pathogenic Listeria spp. isolates. Resistance to tetracycline (7.9%), doxycycline (7.9%), penicillin (4.4%), and ampicillin (4.4%) were the most frequently observed in non-pathogenic Listeria spp. While resistance to two or more antibiotics (5.6%) was most common in Listeria spp., isolates, resistance to one antibiotic was also observed (1.6%). The present results show that non-pathogenic Listeria spp. harbour antimicrobial resistance genes.


Assuntos
Antibacterianos , Listeria , Listeriose , Testes de Sensibilidade Microbiana , Animais , Listeria/efeitos dos fármacos , Listeria/genética , Listeria/classificação , Listeria/isolamento & purificação , Antibacterianos/farmacologia , Espanha/epidemiologia , Listeriose/microbiologia , Listeriose/veterinária , Listeriose/epidemiologia , Genótipo , Farmacorresistência Bacteriana/genética , Sequenciamento Completo do Genoma , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Humanos , Fenótipo
15.
J Vet Intern Med ; 38(1): 363-369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38051604

RESUMO

BACKGROUND: Listeriosis is a severe foodborne infection caused by Listeria monocytogenes, an important foodborne pathogen of animals and humans. Listeriosis is a rare disease in cats. OBJECTIVE: To describe the clinical, diagnostic imaging, histological, and microbiological features of L. monocytogenes-associated mesenteric lymphadenitis in a cat. ANIMALS: Listeria monocytogenes-associated mesenteric lymphadenitis was confirmed in a cat by histology and microbiology. RESULTS: Two distinct isolates of L. monocytogenes were cultured from the affected mesenteric lymph node and whole genome sequencing was performed. CONCLUSION AND CLINICAL IMPORTANCE: This report should alert veterinary clinicians and microbiologists to the syndrome, which may have implications for health and food safety in animals and humans.


Assuntos
Doenças do Gato , Listeria monocytogenes , Listeriose , Linfadenite Mesentérica , Humanos , Gatos , Animais , Listeria monocytogenes/genética , Linfadenite Mesentérica/genética , Linfadenite Mesentérica/veterinária , Microbiologia de Alimentos , Listeriose/veterinária , Listeriose/microbiologia , Genômica
16.
Microbes Infect ; : 105312, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346664

RESUMO

Listeria monocytogenes, a contaminant of raw milk, includes hypervirulent clonal complexes (CC) like CC1, CC4, and CC6, highly overrepresented in dairy products when compared to other food types. Whether their higher prevalence in dairy products is the consequence of a growth advantage in this food remains unknown. We examined growth kinetics of five L. monocytogenes isolates (CC1, CC4, CC6, CC9, and CC121) at 37 and 4 °C in ultra-high temperature (UHT) milk and raw milk. At 4 °C, hypovirulent CC9 and CC121 isolates exhibit better growth parameters in UHT milk compared to the hypervirulent CC1, CC4, and CC6 isolates. CC9 isolate in raw milk at 4 °C exhibited the fastest growth and the highest final concentrations. In contrast, hypervirulent isolates (CC1, CC4, and CC6) displayed better growth rates in UHT milk at 37 °C, the mammalian host temperature. Proteomic analysis of representative hyper- (CC1) and hypovirulent (CC9) isolates showed that they respond to milk cues differently with CC-specific traits. Proteins related to metabolism (such as LysA or different phosphotransferase systems), and stress response were upregulated in both isolates during growth in UHT milk. Our results show that there is a Listeria CC-specific and a Listeria CC-common response to the milk environment. These findings shed light on the overrepresentation of hypervirulent L. monocytogenes isolates in dairy products, suggesting that CC1 and CC4 overrepresentation in dairy products made of raw milk may arise from contamination during or after milking at the farm and discard an advantage of hypervirulent isolates in milk products when stored at refrigeration temperatures.

17.
Microbiology (Reading) ; 159(Pt 7): 1328-1339, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23657685

RESUMO

Bacteria of the genus Listeria contain the largest family of LPXTG surface proteins covalently anchored to the peptidoglycan. The extent to which these proteins may function or be regulated cooperatively is at present unknown. Because of their unique cellular location, we reasoned that distinct LPXTG proteins could act as elements contributing to cell wall homeostasis or influencing the stability of other surface proteins bound to peptidoglycan. To test this hypothesis, we used proteomics to analyse mutants of the intracellular pathogen Listeria monocytogenes lacking distinct LPXTG proteins implicated in pathogen-host interactions, such as InlA, InlF, InlG, InlH, InlJ, LapB and Vip. Changes in the cell wall proteome were found in inlG and vip mutants, which exhibited reduced levels of the LPXTG proteins InlH, Lmo0610, Lmo0880 and Lmo2085, all regulated by the stress-related sigma factor SigB. The ultimate basis of this alteration was uncovered by genome sequencing, which revealed that these inlG and vip mutants carried loss-of-function mutations in the rsbS, rsbU and rsbV genes encoding regulatory proteins that control SigB activity. Attempts to recapitulate this negative selection of SigB in a large series of new inlG or vip mutants constructed for this purpose were, however, unsuccessful. These results indicate that inadvertent secondary mutations affecting SigB functionality can randomly arise in L. monocytogenes when using common genetic procedures or during subculturing. Testing of SigB activity could be therefore valuable when manipulating genetically L. monocytogenes prior to any subsequent phenotypic analysis. This test may be even more justified when generating deletions affecting cell envelope components.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Fator sigma/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Proteínas de Membrana/genética , Proteoma , Proteômica , Fator sigma/genética
18.
Front Microbiol ; 14: 1224910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274751

RESUMO

The vaginal microbiota plays a key role in animals' health. Understanding its diversity and composition and associated changes occurring through the reproductive cycle represents valuable knowledge to disclose the mechanisms leading to dysbiosis and eventually to infection. Even if the human vaginal microbiota has been thoroughly studied, scarce research has been conducted on the vaginal microbiota of livestock. In this study, 16S rRNA gene-based sequencing was performed on vaginal samples of ten nulliparous ewes at three different sampling points: before the estrus synchronization protocol (T0), at the time of estrus before mating (Testrus), and the day of the pregnancy diagnosis (Tpreg). Preputial samples from the three males collected pre and post-mating were also analyzed. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most abundant phyla in vaginal samples. The most abundant genera were Porphyromonas, Anaerococcus, and Peptinophilius. Vaginal microbiota biodiversity decreased during pregnancy. Tenericutes (Ureaplasma spp.) increased significantly at Tpreg in both pregnant and non-pregnant ewes. Differences were observed between pregnant and non-pregnant ewes at Tpreg where pregnant ewes had a significantly higher abundance of Actinobacillus spp. and Ureaplasma spp. Ewes that were diagnosed with pregnancy at Tpreg showed a decreased abundance of gram-negative bacteria such as Bacteroidales, Campylobacterales, and Enterobacteriales. In addition, a significant decrease in the relative abundances of genera within Firmicutes, such as Alloicoccus (Lactobacillales), Atopostipes (Lactobacillales), and an uncultured bacteria W5053 from Family XI (Firmicutes, Clostridiales) was observed in non-pregnant ewes at Tpreg. The four most abundant phyla in the rams' prepuce were the same as in the ewes' vagina. The most abundant genus was Corynebacterium. No major differences were observed in the ram's preputial microbiota between pre and post-mating samples. Nevertheless, the differences in the taxonomic composition of ewes' vaginal microbiota between Testrus and Tpreg could be explained by the exposure to the preputial microbiota. This study offers new insights into the effects of several key steps of the ewe's reproductive cycle such as estrus-synchronization protocol, mating, and pregnancy on ovine vaginal microbiota. The knowledge of the microbiota dynamics during the reproductive cycle can help improve the reproductive outcomes of dams by identifying biomarkers and putative probiotics.

19.
Microbes Infect ; 25(4): 105079, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464197

RESUMO

Two species of Listeria are pathogenic, Listeria monocytogenes and Listeria ivanovii. Although studies have shown that dairy ruminants shed Listeria spp. in feces, there is little information about ruminants that do not shed Listeria spp. in their feces but asymptomatically carry them in organs. We evidence that ruminants can asymptomatically carry L. ivanovii in udders and L. monocytogenes and L. ivanovii in tonsils without fecal shedding. Whole-genome sequence of L. monocytogenes and L. ivanovii contained known core genes involved in virulence and antibiotic resistance. This work highlights tonsils and udders as a Listeria intra-host site of colonization.


Assuntos
Listeria monocytogenes , Listeria , Listeriose , Animais , Listeriose/veterinária , Glândulas Mamárias Animais , Espanha , Tonsila Palatina , Listeria/genética , Ruminantes , Genômica , Fezes
20.
Int Microbiol ; 15(1): 43-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22837151

RESUMO

Gram-positive bacteria of the genus Listeria contain many surface proteins covalently bound to the peptidoglycan. In the pathogenic species Listeria monocytogenes, some of these surface proteins mediate adhesion and entry into host cells. Specialized enzymes called sortases anchor these proteins to the cell wall by a mechanism involving processing and covalent linkage to the peptidoglycan. How bacteria coordinate the production of sortases and their respective protein substrates is currently unknown. The present work investigated whether the functional status of the sortase influences the level at which its cognate substrates are produced. The relative amounts of surface proteins containing an LPXTG sorting motif recognized by sortase A (StrA) were determined in isogenic wild-type and ΔsrtA strains of L. monocytogenes. The possibility of regulation at the transcriptional level was also examined. The results showed that the absence of SrtA did not affect the expression of any of the genes encoding LPXTG proteins. However, marked differences were found at the protein level for some substrates depending on the presence/absence of SrtA. In addition to the known "mis-sorting" of some LPXTG proteins caused by the absence of SrtA, the total amount of certain LPXTG protein species was lower in the ΔsrtA mutant. These data suggested that the rate of synthesis and/or the stability of a subset of LPXTG proteins could be regulated post-transcriptionally depending on the functionality of SrtA. For some LPXTG proteins, the absence of SrtA resulted in only a partial loss of the protein that remained bound to the peptidoglycan, thus providing support for additional modes of cell-wall association in some members of the LPXTG surface protein family.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Aminoaciltransferases/genética , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Interações Hospedeiro-Patógeno , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peptidoglicano/metabolismo , Estabilidade Proteica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA