Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phycol ; 57(6): 1681-1698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34176151

RESUMO

Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.


Assuntos
Fucus , Microbiota , North Carolina , Filogenia , Filogeografia
2.
Heredity (Edinb) ; 123(5): 662-674, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31015580

RESUMO

Spatial patterns of genetic variation can reveal otherwise cryptic evolutionary and landscape processes. In northwestern Costa Rica, an approximately concordant genetic discontinuity occurs among populations of several plant species. We conducted phylogeographic analyses of an epiphytic orchid, Brassavola nodosa, to test for genetic discontinuity and to explore its underlying causes. We genotyped 18 populations with 19 nuclear loci and two non-coding chloroplast sequence regions. We estimated genetic diversity and structure, relative importance of pollen and seed dispersal, and divergence time to understand how genetic diversity was spatially partitioned. Nuclear genetic diversity was high with little differentiation among populations (GSTn = 0.065). In contrast, chloroplast haplotypes were highly structured (GSTc = 0.570) and reveal a discontinuity between northwestern and southeastern populations within Costa Rica. Haplotype differences suggest two formerly isolated lineages that diverged ~10,000-100,000 YBP. Haplotype mixing and greater genetic diversity occur in an intermediate transition zone. Patterns of nuclear and chloroplast data were consistent. Different levels of genetic differentiation for the two genomes reflect the relative effectiveness of biotic versus abiotic dispersers of pollen and seeds, respectively. Isolation of the two lineages likely resulted from the complex environmental and geophysical history of the region. Our results suggest a recent cryptic seed dispersal barrier and/or zone of secondary contact. We hypothesize that powerful northeasterly trade winds hinder movement of wind-borne seeds between the two regions, while the multi-directional dispersal of pollen by strong-flying sphinx moths resulted in lower differentiation of nuclear loci.


Assuntos
Variação Genética , Haplótipos , Orchidaceae/genética , Pólen/genética , Animais , Costa Rica , Genética Populacional , Mariposas , Orchidaceae/crescimento & desenvolvimento , Filogeografia , Polinização , Dispersão de Sementes
3.
J Phycol ; 54(5): 653-664, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981525

RESUMO

While macroalgal microbiomes are the focus of many recent studies, there is little information about microbial spatial diversity across the thallus. Reliance on field material makes it difficult to discern whether recovered microbiomes belong to the host or its epiphytes, and technical comparisons of macroalgal samples for microbial studies are needed. Here, we use a common garden approach that avoids the problem of epiphytes, particularly at holdfasts, to examine the microbiome of Porphyra umbilicalis (strain Pum1). We used the V6 hypervariable region of the 16S rDNA with Illumina HiSeq sequencing and developed PNA clamps to block recovery of organelle V6 sequences. The common garden approach allowed us to determine differences in the microbiome at the holdfast versus blade margin. We found a notable increase in the relative abundance of Planctomycetes and Alphaproteobacteria at the holdfast, particularly of the possible symbiont Sulfitobacter sp. Nonadjacent 1.5 cm2 samples of blade margin had microbiomes that were not statistically different. The most abundant phylum in the overall microbiome was Proteobacteria, followed by Bacteroidetes. Because phycologists often work in remote sites, we compared three stabilization and preparation techniques and found silica gel desiccation/bead-beating and flash-freezing/lyophilization/bead-beating to be interchangeable. Core taxa (≥0.1% of sequences) across treatments were similar and accounted for ≥95% of all sequences. Finally, statistical conclusions for all comparisons were the same, regardless of which microbial community analysis tool was used: mothur or minimum entropy decomposition.


Assuntos
Bactérias , Microbiota , Porphyra/microbiologia , Bactérias/classificação , Bactérias/genética , RNA de Algas/análise , RNA Ribossômico 16S/análise
4.
Front Microbiol ; 11: 563118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072025

RESUMO

The intertidal zone often has varying levels of environmental stresses (desiccation, temperature, light) that result in highly stress-tolerant macrobiota occupying the upper zone while less tolerant species occupy the lower zone, but little comparative information is available for intertidal bacteria. Here we describe natural (unmanipulated) bacterial communities of three Fucus congeners (F. spiralis, high zone; F. vesiculosus, mid zone; F. distichus, low zone) as well as those of F. vesiculosus transplanted to the high zone (Dry and Watered treatments) and to the mid zone (Procedural Control) during summer in Maine (United States). We predicted that bacterial communities would be different among the differently zoned natural congeners, and that higher levels of desiccation stress in the high zone would cause bacterial communities of Dry transplants to become similar to F. spiralis, whereas relieving desiccation stress on Watered transplants would maintain the mid-zone F. vesiculosus bacterial community. Bacteria were identified as amplicon sequence variants (ASVs) after sequencing the V4 hypervariable region of the 16S rRNA gene. Microbiome composition and structure were significantly different between the differently zoned congeners at each tissue type (holdfasts, receptacles, vegetative tips). ASVs significantly associated with the mid-zone congener were frequently also present on the high-zone or low-zone congener, whereas overlap in ASVs between the high-zone and low-zone congeners was rare. Only 7 of 6,320 total ASVs were shared among tissues over all congeners and transplant treatments. Holdfast bacterial community composition of Dry transplants was not significantly different from that of F. spiralis, but Watered holdfast communities were significantly different from those of F. spiralis and not significantly different from those of procedural controls. Additional stressor(s) appeared important, because bacterial communities of Dry and Watered transplants were only marginally different from each other (p = 0.059). The relative abundance of Rhodobacteraceae associated with holdfasts generally correlated with environmental stress with highest abundance associated with F. spiralis and the two high-zone transplant treatments. These findings suggest that the abiotic stressors that shape distributional patterns of host species also affect their bacterial communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA