Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Physiol ; 184(2): 632-646, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32727910

RESUMO

Plants have evolved a range of adaptive mechanisms that adjust their development and physiology to variable external conditions, particularly in perennial species subjected to long-term interplay with the environment. Exploiting the allelic diversity within available germplasm and leveraging the knowledge of the mechanisms regulating genotype interaction with the environment are crucial to address climatic challenges and assist the breeding of novel cultivars with improved resilience. The development of multisite collections is of utmost importance for the conservation and utilization of genetic materials and will greatly facilitate the dissection of genotype-by-environment interaction. Such resources are still lacking for perennial trees, especially with the intrinsic difficulties of successful propagation, material exchange, and living collection maintenance. This work describes the concept, design, and realization of the first multisite peach (Prunus persica) reference collection (PeachRefPop) located across different European countries and sharing the same experimental design. Other than an invaluable tool for scientific studies in perennial species, PeachRefPop provides a milestone in an international collaborative project for the conservation and exploitation of European peach germplasm resources and, ultimately, as a true heritage for future generations.


Assuntos
Prunus persica , Banco de Sementes , Europa (Continente)
2.
J Exp Bot ; 71(18): 5521-5537, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32556164

RESUMO

The cuticle is composed of cutin and cuticular waxes, and it is the first protective barrier to abiotic and biotic stresses in fruit. In this study, we analysed the composition of and changes in cuticular waxes during fruit development in nectarine (Prunus persica L. Batsch) cultivars, in parallel with their conductance and their susceptibility to Monilinia laxa. The nectarine waxes were composed of triterpenoids, mostly ursolic and oleanolic acids, phytosterols, and very-long-chain aliphatics. In addition, we detected phenolic compounds that were esterified with sugars or with triterpenoids, which are newly described in cuticular waxes. We quantified 42 compounds and found that they changed markedly during fruit development, with an intense accumulation of triterpenoids during initial fruit growth followed by their decrease at the end of endocarp lignification and a final increase in very-long-chain alkanes and hydroxylated triterpenoids until maturity. The surface conductance and susceptibility to Monilinia decreased sharply at the beginning of endocarp lignification, suggesting that triterpenoid deposition could play a major role in regulating fruit permeability and susceptibility to brown rot. Our results provide new insights into the composition of cuticular waxes of nectarines and their changes during fruit development, opening new avenues of research to explore brown rot resistance factors in stone fruit.


Assuntos
Ascomicetos , Prunus persica , Frutas , Ceras
3.
Plant J ; 94(4): 685-698, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29543354

RESUMO

The concentrations of sugars in fruit vary with fruit development, environment and genotype. In general, there were weak correlations between the variations in sugar concentrations and the activities of enzymes directly related with the synthesis or degradation of sugars. This finding suggests that the relationships between enzyme activities and metabolites are often non-linear and are difficult to assess. To simulate the concentrations of sucrose, glucose, fructose and sorbitol during the development of peach fruit, a kinetic model of sugar metabolism was developed by taking advantage of recent profiling data. Cell compartmentation (cytosol and vacuole) was described explicitly, and data-driven enzyme activities were used to parameterize equations. The model correctly accounts for both annual and genotypic variations, which were observed in 10 genotypes derived from an interspecific cross. They provided important information on the mechanisms underlying the specification of phenotypic differences. In particular, the model supports the hypothesis that a difference in fructokinase affinity could be responsible for a low fructose-to-glucose ratio phenotype, which was observed in the studied population.


Assuntos
Frutose/metabolismo , Glucose/metabolismo , Prunus persica/metabolismo , Frutas/genética , Frutas/metabolismo , Genótipo , Cinética , Modelos Biológicos , Fenótipo , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Sorbitol/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo
4.
Phytopathology ; 108(5): 595-601, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29182471

RESUMO

Brown rot, caused by Monilinia spp., is a major disease of stone fruit and, in favorable environmental conditions and in the absence of fungicide treatments, it causes important economic losses. In the present work, we propose a modification of classical susceptible, exposed, infectious and removed compartmental models to grasp the peculiarities of the progression of brown rot epidemics in stone fruit orchards in the last stage of the fruit growth (i.e., from the end of the pit hardening to harvest time). Namely, we took into account (i) the lifespan of airborne spores; (ii) the dependence of the latent period on the cuticle crack surface area, which itself varies in time with fruit growth; (iii) the impossibility of recovery in infectious fruit; and (iv) the abrupt interruption of disease development by the elimination of the host fruit at harvest time. We parametrized the model by using field data from a peach Prunus persica orchard infected by Monilinia laxa and M. fructicola in Avignon (southern France). The basic reproduction number indicates that the environmental conditions met in the field were extremely favorable to disease development and the model closely fitted the temporal evolution of the fruit abundance in the different epidemiological compartments. The model permits us to highlight crucial mechanisms undergoing brown rot build up and to evaluate the consequences of different agricultural practices on the quantity and quality of the yield. We found that winter sanitation practices (which decrease the initial infection incidence) and the control of the fruit load (which affects the host fruit density and the single fruit growth trajectory) can be effective in controlling brown rot in conjunction with or in place of fungicide treatments.


Assuntos
Ascomicetos/patogenicidade , Frutas/microbiologia , Doenças das Plantas/microbiologia , Prunus persica/microbiologia , França , Modelos Teóricos
5.
BMC Genomics ; 18(1): 432, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28583089

RESUMO

BACKGROUND: Highly polygenic traits such as fruit weight, sugar content and acidity strongly influence the agroeconomic value of peach varieties. Genomic Selection (GS) can accelerate peach yield and quality gain if predictions show higher levels of accuracy compared to phenotypic selection. The available IPSC 9K SNP array V1 allows standardized and highly reliable genotyping, preparing the ground for GS in peach. RESULTS: A repeatability model (multiple records per individual plant) for genome-enabled predictions in eleven European peach populations is presented. The analysis included 1147 individuals derived from both commercial and non-commercial peach or peach-related accessions. Considered traits were average fruit weight (FW), sugar content (SC) and titratable acidity (TA). Plants were genotyped with the 9K IPSC array, grown in three countries (France, Italy, Spain) and phenotyped for 3-5 years. An analysis of imputation accuracy of missing genotypic data was conducted using the software Beagle, showing that two of the eleven populations were highly sensitive to increasing levels of missing data. The regression model produced, for each trait and each population, estimates of heritability (FW:0.35, SC:0.48, TA:0.53, on average) and repeatability (FW:0.56, SC:0.63, TA:0.62, on average). Predictive ability was estimated in a five-fold cross validation scheme within population as the correlation of true and predicted phenotypes. Results differed by populations and traits, but predictive abilities were in general high (FW:0.60, SC:0.72, TA:0.65, on average). CONCLUSIONS: This study assessed the feasibility of Genomic Selection in peach for highly polygenic traits linked to yield and fruit quality. The accuracy of imputing missing genotypes was as high as 96%, and the genomic predictive ability was on average 0.65, but could be as high as 0.84 for fruit weight or 0.83 for titratable acidity. The estimated repeatability may prove very useful in the management of the typical long cycles involved in peach productions. All together, these results are very promising for the application of genomic selection to peach breeding programmes.


Assuntos
Frutas/crescimento & desenvolvimento , Genômica , Prunus persica/crescimento & desenvolvimento , Prunus persica/genética , Cruzamento , Genótipo , Polimorfismo de Nucleotídeo Único , Estatística como Assunto
6.
BMC Genomics ; 18(1): 404, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28583082

RESUMO

BACKGROUND: Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. RESULTS: Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. CONCLUSIONS: The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality.


Assuntos
Cruzamento , Prunus persica/genética , Locos de Características Quantitativas/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Genótipo , Polimorfismo de Nucleotídeo Único , Probabilidade , Prunus persica/crescimento & desenvolvimento , Solubilidade
7.
J Exp Bot ; 67(11): 3419-31, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27117339

RESUMO

Knowledge of the genetic control of sugar metabolism is essential to enhance fruit quality and promote fruit consumption. The sugar content and composition of fruits varies with species, cultivar and stage of development, and is controlled by multiple enzymes. A QTL (quantitative trait locus) study was performed on peach fruit [Prunus persica (L.) Batsch], the model species for Prunus Progeny derived from an interspecific cross between P. persica cultivars and P. davidiana was used. Dynamic QTLs for fresh weight, sugars, acids, and enzyme activities related to sugar metabolism were detected at different stages during fruit development. Changing effects of alleles during fruit growth were observed, including inversions close to maturity. This QTL analysis was supplemented by the identification of genes annotated on the peach genome as enzymes linked to sugar metabolism or sugar transporters. Several cases of co-locations between annotated genes, QTLs for enzyme activities and QTLs controlling metabolite concentrations were observed and discussed. These co-locations raise hypotheses regarding the functional regulation of sugar metabolism and pave the way for further analyses to enable the identification of the underlying genes. In conclusion, we identified the potential impact on fruit breeding of the modification of QTL effect close to maturity.


Assuntos
Metabolismo dos Carboidratos/genética , Prunus persica/genética , Cruzamentos Genéticos , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Prunus persica/enzimologia , Prunus persica/crescimento & desenvolvimento , Locos de Características Quantitativas
8.
BMC Plant Biol ; 14: 336, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25421154

RESUMO

BACKGROUND: Fruit taste is largely affected by the concentration of soluble sugars and organic acids and non-negligibly by fructose concentration, which is the sweetest-tasting sugar. To date, many studies investigating the sugars in fruit have focused on a specific sugar or enzyme and often on a single variety, but only a few detailed studies addressing sugar metabolism both as a whole and dynamic system are available. In commercial peach fruit, sucrose is the main sugar, followed by fructose and glucose, which have similar levels. Interestingly, low fructose-to-glucose ratios have been observed in wild peach accessions. A cross between wild peach and commercial varieties offers an outstanding possibility to study fruit sugar metabolism. RESULTS: This work provides a large dataset of sugar composition and the capacities of enzymes that are involved in sugar metabolism during peach fruit development and its genetic diversity. A large fraction of the metabolites and enzymes involved in peach sugar metabolism were assayed within a peach progeny of 106 genotypes, of which one quarter displayed a low fructose-to-glucose ratio. This profiling was performed at six stages of growth using high throughput methods. Our results permit drawing a quasi-exhaustive scheme of sugar metabolism in peach. The use of a large number of genotypes revealed a remarkable robustness of enzymatic capacities across genotypes and years, despite strong variations in sugar composition, in particular the fructose-to-glucose ratio, within the progeny. A poor correlation was also found between the enzymatic capacities and the accumulation rates of metabolites. CONCLUSIONS: These results invalidate the hypothesis of the straightforward enzymatic control of sugar concentration in peach fruit. Alternative hypotheses concerning the regulation of fructose concentration are discussed based on experimental data. This work lays the foundation for a comprehensive study of the mechanisms involved in sugar metabolism in developing fruit.


Assuntos
Frutose/metabolismo , Glucose/metabolismo , Prunus/genética , Prunus/metabolismo , Frutas/metabolismo , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus/crescimento & desenvolvimento
9.
Anal Chem ; 85(23): 11312-8, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24195735

RESUMO

The prediction of internal quality properties, such as sweetness and acidity, in peach fruit by mid infrared spectroscopy is of interest for rapid determination. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was tested here on two populations of peach fruits issued from contrasting genitors providing a large phenotypic variability. Over two successive years, 284 samples in 2006 and 483 samples in 2007 were characterized for soluble solids content (SSC), titratable acidity (TA), glucose, fructose, sucrose, malic acid, and citric acid contents. Sugar and organic acid composition were determined by three methods: colorimetric enzymatic measurements (ENZ), high-performance liquid chromatography (HPLC), or proton NMR spectroscopy ((1)H NMR), depending on the samples. For all samples, fruit homogenates were analyzed in ATR-FTIR using the same methodology and the same spectrometer. The objective here was to evaluate the effect of reference methods on the prediction performance. The best results were generally observed for SSC and TA, the percentage of the root-mean-square error of cross validation (RMSECV%) ranging respectively between 5.8% and 8.7% and between 5.9% and 8.0%, depending on the samples. For individual sugars and organic acids, the best correlations were obtained between ATR-FTIR data and ENZ reference data followed by HPLC and (1)H NMR ones.


Assuntos
Ácido Cítrico/análise , Frutose/análise , Glucose/análise , Prunus/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sacarose/análise , Ácido Cítrico/química , Bases de Dados Factuais/normas , Previsões , Frutose/química , Glucose/química , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência , Espectroscopia de Infravermelho com Transformada de Fourier/normas , Sacarose/química
10.
New Phytol ; 197(1): 323-335, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23106477

RESUMO

FLOWERING LOCUS C (FLC) is one of the main genes influencing the vernalization requirement and natural flowering time variation in the annual Arabidopsis thaliana. Here we studied the effects of vernalization on flowering and its genetic basis in the perennial Arabidopsis lyrata. Two tandemly duplicated FLC genes (FLC1 and FLC2) were compared with respect to expression and DNA sequence. The effect of vernalization on flowering and on the expression of FLC1 was studied in three European populations. The genetic basis of the FLC1 expression difference between two of the populations was further studied by expression quantitative trait locus (eQTL) mapping and sequence analysis. FLC1 was shown to have a likely role in the vernalization requirement for flowering in A. lyrata. Vernalization decreased its expression and the northern study populations showed higher FLC1 expression than the southern one. eQTL mapping between two of the populations revealed one eQTL affecting FLC1 expression in the genomic region containing the FLC genes. Most FLC1 sequence differences between the study populations were found in the promoter region and in the first intron. Variation in the FLC1 sequence may cause differences in FLC1 expression between late- and early-flowering A. lyrata populations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Temperatura Baixa , Flores/fisiologia , Proteínas de Domínio MADS/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Duplicados , Genes de Plantas , Íntrons , Proteínas de Domínio MADS/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
11.
Ann Bot ; 111(5): 957-68, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23519836

RESUMO

BACKGROUND AND AIMS: The adaptive plastic reactions of plant populations to changing climatic factors, such as winter temperatures and photoperiod, have changed during range shifts after the last glaciation. Timing of flowering is an adaptive trait regulated by environmental cues. Its genetics has been intensively studied in annual plants, but in perennials it is currently not well characterized. This study examined the genetic basis of differentiation in flowering time, morphology, and their plastic responses to vernalization in two locally adapted populations of the perennial Arabidopsis lyrata: (1) to determine whether the two populations differ in their vernalization responses for flowering phenology and morphology; and (2) to determine the genomic areas governing differentiation and vernalization responses. METHODS: Two A. lyrata populations, from central Europe and Scandinavia, were grown in growth-chamber conditions with and without cold treatment. A QTL analysis was performed to find genomic regions that interact with vernalization. KEY RESULTS: The population from central Europe flowered more rapidly and invested more in inflorescence growth than the population from alpine Scandinavia, especially after vernalization. The alpine population had consistently a low number of inflorescences and few flowers, suggesting strong constraints due to a short growing season, but instead had longer leaves and higher leaf rosettes. QTL mapping in the F2 population revealed genomic regions governing differentiation in flowering time and morphology and, in some cases, the allelic effects from the two populations on a trait were influenced by vernalization (QTL × vernalization interactions). CONCLUSIONS: The results indicate that many potentially adaptive genetic changes have occurred during colonization; the two populations have diverged in their plastic responses to vernalization in traits closely connected to fitness through changes in many genomic areas.


Assuntos
Adaptação Fisiológica/genética , Altitude , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Meio Ambiente , Flores/anatomia & histologia , Flores/genética , Temperatura Baixa , Cruzamentos Genéticos , Flores/fisiologia , Ligação Genética , Alemanha , Homozigoto , Noruega , Locos de Características Quantitativas/genética
12.
Fungal Biol ; 127(7-8): 1085-1097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495299

RESUMO

Phenolic and triterpenoid compounds are essential components in stone fruit skin and flesh tissues. They are thought to possess general antimicrobial activity. However, regarding brown rot disease, investigations were only confined to a limited number of phenolics, especially chlorogenic acid. The activity of triterpenoids against Monilinia spp., as an essential part of the peach cuticular wax, has not been studied before. In this work, the anti-fungal effect of some phenolics, triterpenoids, and fruit surface compound (FSC) extracts of peach fruit at two developmental stages were investigated on Monilinia fructicola and Monilinia laxa characteristics during in vitro growth. A new procedure for assaying anti-fungal activity of triterpenoids, which are notoriously difficult to assess in vitro because of their hydrophobicity, has been developed. Measurements of colony diameter, sporulation, and germination of second-generation conidia were recorded. Furthermore, the expression of twelve genes of M. fructicola associated with germination and/or appressorium formation and virulence-related genes was studied relative to the presence of the compounds. The study revealed that certain phenolics and triterpenoids showed modest anti-fungal activity while dramatically modulating gene expression in mycelium of M. fructicola on culture medium. MfRGAE1 gene was overexpressed by chlorogenic and ferulic acids and MfCUT1 by betulinic acid, at 4- and 7- days of mycelium incubation. The stage II FSC extract, corresponding to the period when the fruit is resistant to Monilinia spp., considerably up-regulated the MfLAE1 gene. These findings effectively contribute to the knowledge of biochemical compounds effects on fungi on in vitro conditions.


Assuntos
Frutas , Prunus persica , Frutas/microbiologia , Meios de Cultura , Doenças das Plantas/microbiologia , Prunus persica/microbiologia , Expressão Gênica
13.
Hortic Res ; 10(10): uhad193, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37927408

RESUMO

Domestication drastically changed crop genomes, fixing alleles of interest and creating different genetic populations. Genome-wide association studies (GWASs) are a powerful tool to detect these alleles of interest (and so QTLs). In this study, we explored the genetic structure as well as additive and non-additive genotype-phenotype associations in a collection of 243 almond accessions. Our genetic structure analysis strongly supported the subdivision of the accessions into five ancestral groups, all formed by accessions with a common origin. One of these groups was formed exclusively by Spanish accessions, while the rest were mainly formed by accessions from China, Italy, France, and the USA. These results agree with archaeological and historical evidence that separate modern almond dissemination into four phases: Asiatic, Mediterranean, Californian, and southern hemisphere. In total, we found 13 independent QTLs for nut weight, crack-out percentage, double kernels percentage, and blooming time. Of the 13 QTLs found, only one had an additive effect. Through candidate gene analysis, we proposed Prudul26A013473 as a candidate gene responsible for the main QTL found in crack-out percentage, Prudul26A012082 and Prudul26A017782 as candidate genes for the QTLs found in double kernels percentage, and Prudul26A000954 as a candidate gene for the QTL found in blooming time. Our study enhances our knowledge of almond dissemination history and will have a great impact on almond breeding.

14.
Front Plant Sci ; 14: 1142974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938044

RESUMO

In sweet cherry (Prunus avium L.), flowering date is strongly dependent on the environment conditions and, therefore, is a trait of major interest for adaptation to climate change. Such trait can be influenced by genotype-by-environment interaction (G×E), that refers to differences in the response of genotypes to different environments. If not taken into account, G×E can reduce selection accuracy and overall genetic gain. However, little is known about G×E in fruit tree species. Flowering date is a highly heritable and polygenic trait for which many quantitative trait loci (QTLs) have been identified. As for the overall genetic performance, differential expression of QTLs in response to environment (QTL-by-environment interaction, QTL×E) can occur. The present study is based on the analysis of a multi-environment trial (MET) suitable for the study of G×E and QTL×E in sweet cherry. It consists of a sweet cherry F1 full-sib family (n = 121) derived from the cross between cultivars 'Regina' and 'Lapins' and planted in two copies in five locations across four European countries (France, Italy, Slovenia and Spain) covering a large range of climatic conditions. The aim of this work was to study the effect of the environment on flowering date and estimate G×E, to carry QTL detection in different environments in order to study the QTL stability across environments and to estimate QTL×E. A strong effect of the environment on flowering date and its genetic control was highlighted. Two large-effect and environment-specific QTLs with significant QTL×E were identified on linkage groups (LGs) 1 and 4. This work gives new insights into the effect of the environment on a trait of main importance in one of the most economically important fruit crops in temperate regions. Moreover, molecular markers were developed for flowering date and a strategy consisting in using specific markers for warm or cold regions was proposed to optimize marker-assisted selection (MAS) in sweet cherry breeding programs.

15.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039854

RESUMO

Most commercial peach [Prunus persica (L.) Batsch] cultivars have leaves with extrafloral nectaries (EFNs). Breeders have selected this character over time, as they observed that the eglandular phenotype resulted in high susceptibility to peach powdery mildew, a major disease of peach trees. EFNs are controlled by a Mendelian locus (E), mapped on chromosome 7. However, the genetic factor underlying E was unknown. In order to address this point, we developed a mapping population of 833 individuals derived from the selfing of "Malo Konare", a Bulgarian peach cultivar, heterozygous for the trait. This progeny was used to investigate the E-locus region, along with additional resources including peach genomic resequencing data, and 271 individuals from various origins used for validation. High-resolution mapping delimited a 40.6 kbp interval including the E-locus and four genes. Moreover, three double-recombinants allowed identifying Prupe.7G121100, a LMI1-like homeodomain leucine zipper (HD-Zip) transcription factor, as a likely candidate for the trait. By comparing peach genomic resequencing data from individuals with contrasted phenotypes, a MITE-like transposable element of the hAT superfamily (mMoshan) was identified in the third exon of Prupe.7G121100. It was associated with the absence or globose phenotype of EFNs. The insertion of the transposon was positively correlated with enhanced expression of Prupe.7G121100. Furthermore, a PCR marker designed from the sequence-variants, allowed to properly assign the phenotypes of all the individuals studied. These findings provide valuable information on the genetic control of a trait poorly known so far although selected for a long time in peach.

16.
Math Biosci ; 321: 108321, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014417

RESUMO

Several studies have been conducted to understand the dynamic of primary metabolisms in fruit by translating them into mathematics models. An ODE kinetic model of sugar metabolism has been developed by Desnoues et al. (2018) to simulate the accumulation of different sugars during peach fruit development. Two major drawbacks of this model are (a) the number of parameters to calibrate and (b) its integration time that can be long due to non-linearity and time-dependent input functions. Together, these issues hamper the use of the model for a large panel of genotypes, for which few data are available. In this paper, we present a model reduction scheme that explicitly addresses the specificity of genetic studies in that: (i) it yields a reduced model that is adapted to the whole expected genetic diversity (ii) it maintains network structure and variable identity, in order to facilitate biological interpretation. The proposed approach is based on the combination and the systematic evaluation of different reduction methods. Thus, we combined multivariate sensitivity analysis, structural simplification and timescale-based approaches to simplify the number and the structure of ordinary differential equations of the model. The original and reduced models were compared based on three criteria, namely the corrected Aikake Information Criterion (AICC), the calibration time and the expected error of the reduced model over a progeny of virtual genotypes. The resulting reduced model not only reproduces the predictions of the original one but presents many advantages including a reduced number of parameters to be estimated and shorter calibration time, opening new promising perspectives for genetic studies and virtual breeding. The validity of the reduced model was further evaluated by calibration on 30 additional genotypes of an inter-specific peach progeny for which few data were available.


Assuntos
Frutas/metabolismo , Modelos Biológicos , Melhoramento Vegetal , Prunus persica/metabolismo , Açúcares/metabolismo , Genótipo , Prunus persica/genética
17.
PLoS One ; 14(10): e0222764, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581203

RESUMO

Classical crop models have been developed to predict crop yield and quality, and they are based on physiological and environmental inputs. After molecular discoveries, models should integrate genetic variation to allow predictions that are more genotype-dependent. An interesting approach, Quantitative Trait Locus (QTL)-based ecophysiological modeling, has shown promising results for the design of ideotypes that are adapted to biotic and abiotic stresses, but there are still limitations to attaining a fully integrated model. The aim of this case study is to clarify the impact of choosing different model equations (closely related and with different numbers of parameters) and optimization methods on the detection of QTLs controlling the parameters of crop growth. Different growth equations were parameterized based on a genetic population by following different approaches. The correlations between parameters were analyzed, and two different strategies were adopted to address the correlation issue. QTL analysis was performed on the optimized values of the parameters of the growth equations and on the observed dry mass (DM) data to validate the QTLs detected. Overall, models and strategies resulted in different QTLs being detected. Similar LOD profiles but with peaks of different heights were observed, some of which were significant, resulting in different numbers of QTLs. In some cases, peaks had slightly different positions or were absent. Even closely related growth models led to the detection of different QTLs. The goodness of fit and complexity of the growth models were found to be insufficient to select the best model. Calculating parameters independently of observed data may not be a good strategy, whereas setting parameters independent of the genotype is recommended. Given the large-scale global optimization problem and the strong correlations between parameters, the two algorithms tested showed poor performance. Currently, the lack of effective algorithms is the main obstacle to answering the question posed. The authors therefore suggest testing different model formulations and comparing the QTLs detected before choosing the best formulation to use in an ecophysiological modeling approach based on QTLs.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas/genética , Algoritmos , Biomassa , Frutas/genética , Frutas/crescimento & desenvolvimento , Genótipo , Escore Lod
18.
Hortic Res ; 5: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507735

RESUMO

Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.

19.
Front Plant Sci ; 7: 1873, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066450

RESUMO

Process-based models are effective tools to predict the phenotype of an individual in different growing conditions. Combined with a quantitative trait locus (QTL) mapping approach, it is then possible to predict the behavior of individuals with any combinations of alleles. However the number of simulations to explore the realm of possibilities may become infinite. Therefore, the use of an efficient optimization algorithm to intelligently explore the search space becomes imperative. The optimization algorithm has to solve a multi-objective problem, since the phenotypes of interest are usually a complex of traits, to identify the individuals with best tradeoffs between those traits. In this study we proposed to unroll such a combined approach in the case of peach fruit quality described through three targeted traits, using a process-based model with seven parameters controlled by QTL. We compared a current approach based on the optimization of the values of the parameters with a more evolved way to proceed which consists in the direct optimization of the alleles controlling the parameters. The optimization algorithm has been adapted to deal with both continuous and combinatorial problems. We compared the spaces of parameters obtained with different tactics and the phenotype of the individuals resulting from random simulations and optimization in these spaces. The use of a genetic model enabled the restriction of the dimension of the parameter space toward more feasible combinations of parameter values, reproducing relationships between parameters as observed in a real progeny. The results of this study demonstrated the potential of such an approach to refine the solutions toward more realistic ideotypes. Perspectives of improvement are discussed.

20.
J Agric Food Chem ; 64(20): 4029-47, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27133976

RESUMO

Brown rot (BR) caused by Monilinia spp., has been an economic problem for the stone fruit market due to dramatic losses, mainly during the postharvest period. There is much literature about basic aspects of Monilinia spp. infection, which indicates that environment significantly influences its occurrence in the orchard. However, progress is needed to sustainably limit this disease: the pathogen is able to develop resistance to pesticides, and most of BR resistance research programs in plant models perish. Solving this problem becomes important due to the need to decrease chemical treatments and reduce residues on fruit. Thus, research has recently increased, exploring a wide range of disease control strategies (e.g., genetic, chemical, physical). Summarizing this information is difficult, as studies evaluate different Monilinia and Prunus model species, with diverse strategies and protocols. Thus, the purpose of this review is to present the diversity and distribution of agents causing BR, focusing on the biochemical mechanisms of Monilinia spp. infection both of the fungi and of the fruit, and report on the resistance sources in Prunus germplasm. This review comprehensively compiles the information currently available to better understand mechanisms related to BR resistance.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Prunus/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Frutas/microbiologia , Doenças das Plantas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA