Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34261793

RESUMO

Three variable 2 (V2) loops of HIV-1 envelope glycoprotein (Env) trimer converge at the Env apex to form the epitope of an important classes of HIV-1 broadly neutralizing antibodies (bNAbs). These V2-glycan/apex antibodies are exceptionally potent but less broad (∼60 to 75%) than many other bNAbs. Their CDRH3 regions are typically long, acidic, and tyrosine sulfated. Tyrosine sulfation complicates efforts to improve these antibodies through techniques such as phage or yeast display. To improve the breadth of CAP256-VRC26.25 (VRC26.25), a very potent apex antibody, we adapted and extended a B cell display approach. Specifically, we used CRISPR/Cas12a to introduce VRC26.25 heavy- and light-chain genes into their respective loci in a B cell line, ensuring that each cell expresses a single VRC26.25 variant. We then diversified these loci through activation-induced cytidine deaminase-mediated hypermutation and homology-directed repair using randomized CDRH3 sequences as templates. Iterative sorting with soluble Env trimers and further randomization selected VRC26.25 variants with successively improving affinities. Three mutations in the CDRH3 region largely accounted for this improved affinity, and VRC26.25 modified with these mutations exhibited greater breadth and potency than the original antibody. Our data describe a broader and more-potent form of VRC26.25 as well as an approach useful for improving the breadth and potency of antibodies with functionally important posttranslational modifications.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Engenharia de Proteínas , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
2.
PLoS Pathog ; 17(4): e1009501, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836016

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , COVID-19/virologia , Quirópteros/metabolismo , SARS-CoV-2/genética , Animais , COVID-19/genética , Quirópteros/genética , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/imunologia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Mol Ther ; 30(1): 184-197, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740791

RESUMO

B cells have been engineered ex vivo to express an HIV-1 broadly neutralizing antibody (bNAb). B cell reprograming may be scientifically and therapeutically useful, but current approaches limit B cell repertoire diversity and disrupt the organization of the heavy-chain locus. A more diverse and physiologic B cell repertoire targeting a key HIV-1 epitope could facilitate evaluation of vaccines designed to elicit bNAbs, help identify more potent and bioavailable bNAb variants, or directly enhance viral control in vivo. Here we address the challenges of generating such a repertoire by replacing the heavy-chain CDR3 (HCDR3) regions of primary human B cells. To do so, we identified and utilized an uncharacterized Cas12a ortholog that recognizes PAM motifs present in human JH genes. We also optimized the design of 200 nucleotide homology-directed repair templates (HDRT) by minimizing the required 3'-5' deletion of the HDRT-complementary strand. Using these techniques, we edited primary human B cells to express a hemagglutinin epitope tag and the HCDR3 regions of the bNAbs PG9 and PG16. Those edited with bNAb HCDR3 efficiently bound trimeric HIV-1 antigens, implying they could affinity mature in vivo in response to the same antigens. This approach generates diverse B cell repertoires recognizing a key HIV-1 neutralizing epitope.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Anticorpos Anti-HIV/genética , Infecções por HIV/genética , Infecções por HIV/terapia , HIV-1/genética , Humanos
4.
Nature ; 519(7541): 87-91, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25707797

RESUMO

Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 µg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 µg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 µg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.


Assuntos
Antígenos CD4/imunologia , Dependovirus/genética , Imunoglobulinas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Internalização do Vírus , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Antagonistas dos Receptores CCR5/imunologia , Antígenos CD4/genética , Feminino , Terapia Genética , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , HIV-2/imunologia , Imunoglobulinas/genética , Macaca mulatta , Masculino , Testes de Neutralização , Receptores CCR5/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
5.
PLoS Pathog ; 14(8): e1007238, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30125330

RESUMO

Many broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus type 1 (HIV-1) were shown effective in animal models, and are currently evaluated in clinical trials. However, use of these antibodies in humans is hampered by the rapid emergence of resistant viruses. Here we show that soft-randomization can be used to accelerate the parallel identification of viral escape pathways. As a proof of principle, we soft-randomized the epitope regions of VRC01-class bNAbs in replication-competent HIV-1 and selected for resistant variants. After only a few passages, a surprisingly diverse population of antibody-resistant viruses emerged, bearing both novel and previously described escape mutations. We observed that the escape variants resistant to some VRC01-class bNAbs are resistant to most other bNAbs in the same class, and that a subset of variants was completely resistant to every well characterized VRC01-class bNAB, including VRC01, NIH45-46, 3BNC117, VRC07, N6, VRC-CH31, and VRC-PG04. Thus, our data demonstrate that soft randomization is a suitable approach for accelerated detection of viral escape, and highlight the challenges inherent in administering or attempting to elicit VRC01-class antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Anti-HIV , HIV-1/imunologia , Evasão da Resposta Imune/efeitos dos fármacos , Evasão da Resposta Imune/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Evasão da Resposta Imune/genética , Mutação , Testes de Neutralização , Células Tumorais Cultivadas
6.
J Virol ; 90(17): 7822-32, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334589

RESUMO

UNLABELLED: The HIV-1 envelope glycoprotein (Env) is a trimer of gp120/gp41 heterodimers that mediates viral entry. Env binds cellular CD4, an association which stabilizes a conformation favorable to its subsequent association with a coreceptor, typically CCR5 or CXCR4. The CD4- and coreceptor-binding sites serve as epitopes for two classes of HIV-1-neutralizing antibodies: CD4-binding site (CD4bs) and CD4-induced (CD4i) antibodies, respectively. Here we observed that, at a fixed total concentration, mixtures of the CD4i antibodies (E51 or 412d) and the CD4bs antibody VRC01 neutralized the HIV-1 isolates 89.6, ADA, SG3, and SA32 more efficiently than either antibody alone. We found that E51, and to a lesser extent 412d and 17b, promoted association of four CD4bs antibodies to the Env trimer but not to monomeric gp120. We further demonstrated that the binding of the sulfotyrosine-binding pocket by CCR5mim2-Ig was sufficient for promoting CD4bs antibody binding to Env. Interestingly, the relationship is not reciprocal: CD4bs antibodies were not as efficient as CD4-Ig at promoting E51 or 412d binding to Env trimer. Consistent with these observations, CD4-Ig, but none of the CD4bs antibodies tested, substantially increased HIV-1 infection of a CD4-negative, CCR5-positive cell line. We conclude that the ability of CD4i antibodies to promote VRC01 association with Env trimers accounts for the increase potency of VRC01 and CD4i antibody mixtures. Our data further suggest that potent CD4bs antibodies avoid inducing Env conformations that bind CD4i antibodies or CCR5. IMPORTANCE: Potent HIV-1-neutralizing antibodies can prevent viral transmission and suppress an ongoing infection. Here we show that CD4-induced (CD4i) antibodies, which recognize the conserved coreceptor-binding site of the HIV-1 envelope glycoprotein (Env), can increase the association of Env with potent broadly neutralizing antibodies that recognize the CD4-binding site (CD4bs antibodies). We further show that, unlike soluble forms of CD4, CD4bs antibodies poorly induce envelope glycoprotein conformations that efficiently bind CCR5. This study provides insight into the properties of potent CD4bs antibodies and suggests that, under some conditions, CD4i antibodies can improve their potency. These observations may be helpful to the development of vaccines designed to elicit specific antibody classes.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sítios de Ligação , Linhagem Celular , HIV-1/fisiologia , Humanos , Ligação Proteica , Ligação Viral
7.
J Virol ; 88(6): 3353-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390333

RESUMO

UNLABELLED: The HIV-1 envelope glycoprotein binds cooperatively to its cellular receptor CD4 and a coreceptor, principally CXCR4 or CCR5. We have previously improved a natural amino-acid form of a scorpion toxin-derived CD4-mimetic peptide and in parallel generated sulfopeptide mimetics of the CCR5 amino terminus. Here we show that some fusions of these CCR5- and CD4-mimetic peptides, expressed as immunoadhesins, neutralize HIV-1 more efficiently than CD4-Fc or equimolar mixtures of immunoadhesin forms of each peptide. Specifically, double-mimetic peptides with linkers of 11 amino acids or greater, and with the CCR5-mimetic component preceding the CD4-mimetic component, were more efficient than constructs with shorter linkers or in a reverse orientation. The potency of these constructs derives from (i) their ability to simultaneously and cooperatively bind the CD4- and CCR5-binding sites of a single gp120 monomer of the HIV-1 envelope glycoprotein trimer and (ii) the ability of the CCR5-mimetic component to prevent the CD4-mimetic peptide from promoting infection when cellular CD4 is limiting. Thus, there is a significant advantage to simultaneously targeting both conserved regions of the HIV-1 envelope glycoprotein. IMPORTANCE: This report describes a novel class of peptides that potently inhibit HIV-1 entry. These peptides simultaneously target the receptor- and coreceptor-binding sites of the HIV-1 envelope glycoprotein gp120. Peptides of this class overcome key limitations of inhibitors that target only one gp120 binding region and illustrate the utility of binding the sulfotyrosine-binding pockets of gp120.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Peptídeos/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Receptores de HIV/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Antígenos CD4/genética , Linhagem Celular , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Peptídeos/genética , Ligação Proteica , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores de HIV/genética
8.
J Biol Chem ; 288(26): 18803-10, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23667257

RESUMO

Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.


Assuntos
HIV-1/fisiologia , Biblioteca de Peptídeos , Produtos do Gene env do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Sequência de Aminoácidos , Anticorpos/química , Antivirais/farmacologia , Citometria de Fluxo/métodos , Vetores Genéticos , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Receptores CCR5/metabolismo , Ressonância de Plasmônio de Superfície , Internalização do Vírus/efeitos dos fármacos
9.
J Virol ; 86(22): 12417-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933279

RESUMO

A tyrosine-sulfated CCR5-mimetic peptide, CCR5mim1, inhibits HIV-1 infection more efficiently than sulfopeptides based on the CCR5 amino terminus. Here we characterized sulfopeptide chimeras of CCR5mim1 and the heavy-chain CDR3 of the antibody PG16. Two chimeras bound a range of envelope glycoproteins and neutralized HIV-1 more efficiently than CCR5mim1. An immunoadhesin form of one of these, CCR5mim2-Ig, synergized with CD4-Ig to neutralize HIV-1. These sulfopeptides are among the broadest and most potent CCR5-mimetic peptides described to date.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , Receptores CCR5/metabolismo , Anticorpos Neutralizantes/química , Linfócitos T CD4-Positivos/citologia , Epitopos/química , Glicoproteínas/química , Células HEK293 , Humanos , Testes de Neutralização , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores CCR5/química
10.
NPJ Vaccines ; 8(1): 156, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821446

RESUMO

During the COVID-19 pandemic, Pfizer-BioNTech and Moderna successfully developed nucleoside-modified mRNA lipid nanoparticle (LNP) vaccines. SARS-CoV-2 spike protein expressed by those vaccines are identical in amino acid sequence, but several key components are distinct. Here, we compared the effect of ionizable lipids, untranslated regions (UTRs), and nucleotide composition of the two vaccines, focusing on mRNA delivery, antibody generation, and long-term stability. We found that the ionizable lipid, SM-102, in Moderna's vaccine performs better than ALC-0315 in Pfizer-BioNTech's vaccine for intramuscular delivery of mRNA and antibody production in mice and long-term stability at 4 °C. Moreover, Pfizer-BioNTech's 5' UTR and Moderna's 3' UTR outperform their counterparts in their contribution to transgene expression in mice. We further found that varying N1-methylpseudouridine content at the wobble position of mRNA has little effect on vaccine efficacy. These findings may contribute to the further improvement of nucleoside-modified mRNA-LNP vaccines and therapeutics.

11.
J Virol ; 85(15): 7563-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21613393

RESUMO

The HIV-1 envelope glycoprotein is a trimeric complex of heterodimers composed of a surface glycoprotein, gp120, and a transmembrane component, gp41. The association of this complex with CD4 stabilizes the coreceptor-binding site of gp120 and promotes the exposure of the gp41 helical region 1 (HR1). Here, we show that a 15-amino-acid peptide mimetic of the HIV-1 coreceptor CCR5 fused to a dimeric antibody Fc domain (CCR5mim-Ig) bound two gp120 molecules per envelope glycoprotein complex and by itself promoted HR1 exposure. CCR5mim-Ig also stabilized the association of a CD4-mimetic peptide with the envelope glycoprotein. A fusion of the CD4- and CCR5-mimetic peptides, DM1, bound gp120 and neutralized R5, R5X4, and X4 HIV-1 isolates comparably to CD4, and they did so markedly more efficiently than either peptide alone. Our data indicate that the potency of DM1-Ig derives from its avidity for the HIV-1 envelope glycoprotein trimer and from the bidirectional induction of its receptor-mimetic components. DM1 has significant advantages over other inhibitors that target both coreceptor and CD4-binding sites, and it may serve as a lead for a new class of HIV-1 inhibitor peptides.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Mimetismo Molecular , Receptores CCR5/metabolismo , Sulfatos/metabolismo , Tirosina/metabolismo , Linhagem Celular , Citometria de Fluxo , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , HIV-1 , Humanos , Modelos Moleculares , Conformação Proteica , Receptores CCR5/química
12.
mBio ; 12(3)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975938

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Receptores de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Sítios de Ligação , Vacinas contra COVID-19/química , Feminino , Engenharia Genética , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Receptores de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
13.
Nat Struct Mol Biol ; 28(2): 202-209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432247

RESUMO

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS­CoV­2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS­CoV­2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Tratamento Farmacológico da COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/uso terapêutico , Antivirais/uso terapêutico , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Engenharia de Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , SARS-CoV-2/fisiologia
14.
PLoS Pathog ; 4(2): e16, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18248090

RESUMO

Members of the TRIpartite interaction Motif (TRIM) family of E3 ligases have been shown to exhibit antiviral activities. Here we report a near comprehensive screen for antiretroviral activities of 55 TRIM proteins (36 human, 19 mouse). We identified approximately 20 TRIM proteins that, when transiently expressed in HEK293 cells, affect the entry or release of human immunodeficiency virus 1 (HIV), murine leukemia virus (MLV), or avian leukosis virus (ALV). While TRIM11 and 31 inhibited HIV entry, TRIM11 enhanced N-MLV entry by interfering with Ref1 restriction. Strikingly, many TRIM proteins affected late stages of the viral life cycle. Gene silencing of endogenously expressed TRIM 25, 31, and 62 inhibited viral release indicating that they play an important role at late stages of the viral life cycle. In contrast, downregulation of TRIM11 and 15 enhanced virus release suggesting that these proteins contribute to the endogenous restriction of retroviruses in cells.


Assuntos
Interações Hospedeiro-Patógeno , Retroviridae/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Animais , Antirretrovirais , Apoptose , Vírus da Leucose Aviária/patogenicidade , Vírus da Leucose Aviária/fisiologia , Sobrevivência Celular , Regulação Viral da Expressão Gênica , Inativação Gênica , HIV/patogenicidade , HIV/fisiologia , Células HeLa , Humanos , Vírus da Leucemia Murina/patogenicidade , Vírus da Leucemia Murina/fisiologia , Camundongos , Retroviridae/patogenicidade , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
15.
bioRxiv ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33236008

RESUMO

The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.

16.
Nat Commun ; 11(1): 6013, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243994

RESUMO

SARS-CoV-2 variants with spike (S)-protein D614G mutations now predominate globally. We therefore compare the properties of the mutated S protein (SG614) with the original (SD614). We report here pseudoviruses carrying SG614 enter ACE2-expressing cells more efficiently than those with SD614. This increased entry correlates with less S1-domain shedding and higher S-protein incorporation into the virion. Similar results are obtained with virus-like particles produced with SARS-CoV-2 M, N, E, and S proteins. However, D614G does not alter S-protein binding to ACE2 or neutralization sensitivity of pseudoviruses. Thus, D614G may increase infectivity by assembling more functional S protein into the virion.


Assuntos
COVID-19/virologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Vírion/metabolismo , Montagem de Vírus/genética , Internalização do Vírus , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , Células HEK293 , Humanos , Mutação , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
bioRxiv ; 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32995768

RESUMO

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase that forms a dimer and serves as the cellular receptor for SARS-CoV-2. It is also a key negative regulator of the renin-angiotensin system (RAS), conserved in mammals, which modulates vascular functions. We report here the properties of a trimeric ACE2 variant, created by a structure-based approach, with binding affinity of ~60 pM for the spike (S) protein of SARS-CoV-2, while preserving the wildtype peptidase activity as well as the ability to block activation of angiotensin II receptor type 1 in the RAS. Moreover, the engineered ACE2 potently inhibits infection of SARS-CoV-2 in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.

18.
bioRxiv ; 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637954

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus ) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related SARS-CoV-2, has been isolated from one horseshoe-bat species. Here we characterize the ability of S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, and RaTG13 to bind a range of ACE2 orthologs. We observed that the SARS-CoV-2 RBD bound human, pangolin, and horseshoe bat ( R. macrotis) ACE2 more efficiently than the SARS-CoV-1 or RaTG13 RBD. Only the RaTG13 RBD bound rodent ACE2 orthologs efficiently. Five mutations drawn from ACE2 orthologs of nine Rhinolophus species enhanced human ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 by an immunoadhesin form of human ACE2 (ACE2-Fc). Two of these mutations impaired neutralization of SARS-CoV-1. An ACE2-Fc variant bearing all five mutations neutralized SARS-CoV-2 five-fold more efficiently than human ACE2-Fc. These data narrow the potential SARS-CoV-2 reservoir, suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of ACE2-Fc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA