Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 36(8): 1760-1769, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739567

RESUMO

The timing of semantic processing during object recognition in the brain is a topic of ongoing discussion. One way of addressing this question is by applying multivariate pattern analysis to human electrophysiological responses to object images of different semantic categories. However, although multivariate pattern analysis can reveal whether neuronal activity patterns are distinct for different stimulus categories, concerns remain on whether low-level visual features also contribute to the classification results. To circumvent this issue, we applied a cross-decoding approach to magnetoencephalography data from stimuli from two different modalities: images and their corresponding written words. We employed items from three categories and presented them in a randomized order. We show that if the classifier is trained on words, pictures are classified between 150 and 430 msec after stimulus onset, and when training on pictures, words are classified between 225 and 430 msec. The topographical map, identified using a searchlight approach for cross-modal activation in both directions, showed left lateralization, confirming the involvement of linguistic representations. These results point to semantic activation of pictorial stimuli occurring at ∼150 msec, whereas for words, the semantic activation occurs at ∼230 msec.


Assuntos
Magnetoencefalografia , Reconhecimento Visual de Modelos , Semântica , Humanos , Feminino , Masculino , Adulto , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem , Encéfalo/fisiologia , Estimulação Luminosa , Mapeamento Encefálico , Leitura
2.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726799

RESUMO

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Assuntos
Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Cadeias de Markov , Desempenho Psicomotor/fisiologia , Córtex Cerebral/fisiologia , Movimento/fisiologia , Ritmo beta/fisiologia
3.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38989630

RESUMO

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Assuntos
Doença de Alzheimer , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Reprodutibilidade dos Testes , Doença de Alzheimer/fisiopatologia , Masculino , Feminino , Idoso , Modelos Neurológicos , Teorema de Bayes
4.
Hum Brain Mapp ; 44(1): 66-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259549

RESUMO

Epilepsy is a highly heterogeneous neurological disorder with variable etiology, manifestation, and response to treatment. It is imperative that new models of epileptiform brain activity account for this variability, to identify individual needs and allow clinicians to curate personalized care. Here, we use a hidden Markov model (HMM) to create a unique statistical model of interictal brain activity for 10 pediatric patients. We use magnetoencephalography (MEG) data acquired as part of standard clinical care for patients at the Children's Hospital of Philadelphia. These data are routinely analyzed using excess kurtosis mapping (EKM); however, as cases become more complex (extreme multifocal and/or polymorphic activity), they become harder to interpret with EKM. We assessed the performance of the HMM against EKM for three patient groups, with increasingly complicated presentation. The difference in localization of epileptogenic foci for the two methods was 7 ± 2 mm (mean ± SD over all 10 patients); and 94% ± 13% of EKM temporal markers were matched by an HMM state visit. The HMM localizes epileptogenic areas (in agreement with EKM) and provides additional information about the relationship between those areas. A key advantage over current methods is that the HMM is a data-driven model, so the output is tuned to each individual. Finally, the model output is intuitive, allowing a user (clinician) to review the result and manually select the HMM epileptiform state, offering multiple advantages over previous methods and allowing for broader implementation of MEG epileptiform analysis in surgical decision-making for patients with intractable epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Criança , Magnetoencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Philadelphia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos
5.
Brain ; 145(1): 237-250, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34264308

RESUMO

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Assuntos
Estimulação Encefálica Profunda , Transtornos Motores , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia
6.
J Neurosci ; 41(33): 7065-7075, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34261698

RESUMO

At any given moment our sensory systems receive multiple, often rhythmic, inputs from the environment. Processing of temporally structured events in one sensory modality can guide both behavioral and neural processing of events in other sensory modalities, but whether this occurs remains unclear. Here, we used human electroencephalography (EEG) to test the cross-modal influences of a continuous auditory frequency-modulated (FM) sound on visual perception and visual cortical activity. We report systematic fluctuations in perceptual discrimination of brief visual stimuli in line with the phase of the FM-sound. We further show that this rhythmic modulation in visual perception is related to an accompanying rhythmic modulation of neural activity recorded over visual areas. Importantly, in our task, perceptual and neural visual modulations occurred without any abrupt and salient onsets in the energy of the auditory stimulation and without any rhythmic structure in the visual stimulus. As such, the results provide a critical validation for the existence and functional role of cross-modal entrainment and demonstrates its utility for organizing the perception of multisensory stimulation in the natural environment.SIGNIFICANCE STATEMENT Our sensory environment is filled with rhythmic structures that are often multi-sensory in nature. Here, we show that the alignment of neural activity to the phase of an auditory frequency-modulated (FM) sound has cross-modal consequences for vision: yielding systematic fluctuations in perceptual discrimination of brief visual stimuli that are mediated by accompanying rhythmic modulation of neural activity recorded over visual areas. These cross-modal effects on visual neural activity and perception occurred without any abrupt and salient onsets in the energy of the auditory stimulation and without any rhythmic structure in the visual stimulus. The current work shows that continuous auditory fluctuations in the natural environment can provide a pacing signal for neural activity and perception across the senses.


Assuntos
Estimulação Acústica , Periodicidade , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Aprendizagem por Associação/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
7.
Neuroimage ; 260: 119462, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872176

RESUMO

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses. We therefore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. However, this does not negate the accompanying interpretational challenges. We show that these can be resolved by decoding paradigms that utilise both a signal's instantaneous magnitude and its local gradient information as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are higher, more stable over time, and free of the technical and interpretational challenges previously characterised. We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations of decoding results by linking them more clearly to the underlying signal characteristics that drive them.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Neurofisiologia
8.
Neuroimage ; 240: 118330, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237443

RESUMO

Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Redes Neurais de Computação , Humanos , Análise Multivariada
9.
J Neurophysiol ; 126(5): 1670-1684, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614377

RESUMO

Neurophysiological signals are often noisy, nonsinusoidal, and consist of transient bursts. Extraction and analysis of oscillatory features (such as waveform shape and cross-frequency coupling) in such data sets remains difficult. This limits our understanding of brain dynamics and its functional importance. Here, we develop iterated masking empirical mode decomposition (itEMD), a method designed to decompose noisy and transient single-channel data into relevant oscillatory modes in a flexible, fully data-driven way without the need for manual tuning. Based on empirical mode decomposition (EMD), this technique can extract single-cycle waveform dynamics through phase-aligned instantaneous frequency. We test our method by extensive simulations across different noise, sparsity, and nonsinusoidality conditions. We find itEMD significantly improves the separation of data into distinct nonsinusoidal oscillatory components and robustly reproduces waveform shape across a wide range of relevant parameters. We further validate the technique on multimodal, multispecies electrophysiological data. Our itEMD extracts known rat hippocampal θ waveform asymmetry and identifies subject-specific human occipital α without any prior assumptions about the frequencies contained in the signal. Notably, it does so with significantly less mode mixing compared with existing EMD-based methods. By reducing mode mixing and simplifying interpretation of EMD results, itEMD will enable new analyses into functional roles of neural signals in behavior and disease.NEW & NOTEWORTHY We introduce a novel, data-driven method to identify oscillations in neural recordings. This approach is based on empirical mode decomposition and reduces mixing of components, one of its main problems. The technique is validated and compared with existing methods using simulations and real data. We show our method better extracts oscillations and their properties in highly noisy and nonsinusoidal datasets.


Assuntos
Ondas Encefálicas/fisiologia , Eletroencefalografia/métodos , Fenômenos Eletrofisiológicos/fisiologia , Processamento de Sinais Assistido por Computador , Animais , Ratos
10.
J Neurophysiol ; 126(4): 1190-1208, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406888

RESUMO

The nonsinusoidal waveform is emerging as an important feature of neuronal oscillations. However, the role of single-cycle shape dynamics in rapidly unfolding brain activity remains unclear. Here, we develop an analytical framework that isolates oscillatory signals from time series using masked empirical mode decomposition to quantify dynamical changes in the shape of individual cycles (along with amplitude, frequency, and phase) with instantaneous frequency. We show how phase-alignment, a process of projecting cycles into a regularly sampled phase grid space, makes it possible to compare cycles of different durations and shapes. "Normalized shapes" can then be constructed with high temporal detail while accounting for differences in both duration and amplitude. We find that the instantaneous frequency tracks nonsinusoidal shapes in both simulated and real data. Notably, in local field potential recordings of mouse hippocampal CA1, we find that theta oscillations have a stereotyped slow-descending slope in the cycle-wise average yet exhibit high variability on a cycle-by-cycle basis. We show how principal component analysis allows identification of motifs of theta cycle waveform that have distinct associations to cycle amplitude, cycle duration, and animal movement speed. By allowing investigation into oscillation shape at high temporal resolution, this analytical framework will open new lines of inquiry into how neuronal oscillations support moment-by-moment information processing and integration in brain networks.NEW & NOTEWORTHY We propose a novel analysis approach quantifying nonsinusoidal waveform shape. The approach isolates oscillations with empirical mode decomposition before waveform shape is quantified using phase-aligned instantaneous frequency. This characterizes the full shape profile of individual cycles while accounting for between-cycle differences in duration, amplitude, and timing. We validated in simulations before applying to identify a range of data-driven nonsinusoidal shape motifs in hippocampal theta oscillations.


Assuntos
Ondas Encefálicas/fisiologia , Região CA1 Hipocampal/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Animais , Camundongos , Ritmo Teta/fisiologia
11.
Neuroimage ; 206: 116288, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654762

RESUMO

Modulation of beta-band neural oscillations during and following movement is a robust marker of brain function. In particular, the post-movement beta rebound (PMBR), which occurs on movement cessation, has been related to inhibition and connectivity in the healthy brain, and is perturbed in disease. However, to realise the potential of the PMBR as a biomarker, its modulation by task parameters must be characterised and its functional role determined. Here, we used MEG to image brain electrophysiology during and after a grip-force task, with the aim to characterise how task duration, in the form of an isometric contraction, modulates beta responses. Fourteen participants exerted a 30% maximum voluntary grip-force for 2, 5 and 10 s. Our results showed that the amplitude of the PMBR is modulated by task duration, with increasing duration significantly reducing PMBR amplitude and increasing its time-to-peak. No variation in the amplitude of the movement related beta decrease (MRBD) with task duration was observed. To gain insight into what may underlie these trial-averaged results, we used a Hidden Markov Model to identify the individual trial dynamics of a brain network encompassing bilateral sensorimotor areas. The rapidly evolving dynamics of this network demonstrated similar variation with task parameters to the 'classical' rebound, and we show that the modulation of the PMBR can be well-described in terms of increased frequency of beta events on a millisecond timescale rather than modulation of beta amplitude during this time period. Our results add to the emerging picture that, in the case of a carefully controlled paradigm, beta modulation can be systematically controlled by task parameters and such control can reveal new information as to the processes that generate the average beta timecourse. These findings will support design of clinically relevant paradigms and analysis pipelines in future use of the PMBR as a marker of neuropathology.


Assuntos
Ritmo beta/fisiologia , Neuroimagem Funcional , Magnetoencefalografia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Análise e Desempenho de Tarefas , Adulto , Humanos , Contração Isométrica/fisiologia , Fatores de Tempo
12.
Neuroimage ; 209: 116537, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935517

RESUMO

Neural oscillations dominate electrophysiological measures of macroscopic brain activity and fluctuations in these rhythms offer an insightful window on cortical excitation, inhibition, and connectivity. However, in recent years the 'classical' picture of smoothly varying oscillations has been challenged by the idea that many 'oscillations' may actually be formed from the recurrence of punctate high-amplitude bursts in activity, whose spectral composition intersects the traditionally defined frequency ranges (e.g. alpha/beta band). This finding offers a new interpretation of measurable brain activity, however neither the methodological means to detect bursts, nor their link to other findings (e.g. connectivity) have been settled. Here, we use a new approach to detect bursts in magnetoencephalography (MEG) data. We show that a time-delay embedded Hidden Markov Model (HMM) can be used to delineate single-region bursts which are in agreement with existing techniques. However, unlike existing techniques, the HMM looks for specific spectral patterns in timecourse data. We characterise the distribution of burst duration, frequency of occurrence and amplitude across the cortex in resting state MEG data. During a motor task we show how the movement related beta decrease and post movement beta rebound are driven by changes in burst occurrence. Finally, we show that the beta band functional connectome can be derived using a simple measure of burst overlap, and that coincident bursts in separate regions correspond to a period of heightened coherence. In summary, this paper offers a new methodology for burst identification and connectivity analysis which will be important for future investigations of neural oscillations.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Neuroimage ; 200: 38-50, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31207339

RESUMO

Fluctuations in functional interactions between brain regions typically occur at the millisecond time scale. Conventional connectivity metrics are not adequately time-resolved to detect such fast fluctuations in functional connectivity. At the same time, attempts to use conventional metrics in a time-resolved manner usually come with the selection of sliding windows of fixed arbitrary length. In the current work, we evaluated the use of high temporal resolution metrics of functional connectivity in conjunction with non-negative tensor factorisation to detect fast fluctuations in connectivity and temporally evolving subnetworks. To this end, we used the phase difference derivative, wavelet coherence, and we also introduced a new metric, the instantaneous amplitude correlation. In order to deal with the inherently noisy nature of magnetoencephalography data and large datasets, we make use of recurrence plots and we used pair-wise orthogonalisation to avoid spurious estimates of functional connectivity due to signal leakage. Firstly, metrics were evaluated in the context of dynamically coupled neural mass models in the presence and absence of delays and also compared to conventional static metrics with fixed sliding windows. Simulations showed that these high temporal resolution metrics outperformed conventional static connectivity metrics. Secondly, the sensitivity of the metrics to fluctuations in connectivity was analysed in post-movement beta rebound magnetoencephalography data, which showed time locked sensorimotor subnetworks that modulated with the post-movement beta rebound. Finally, sensitivity of the metrics was evaluated in resting-state magnetoencephalography, showing similar spatial patterns across metrics, thereby indicating the robustness of the current analysis. The current methods can be applied in cognitive experiments that involve fast modulations in connectivity in relation to cognition. In addition, these methods could also be used as input to temporal graph analysis to further characterise the rapid fluctuation in brain network topology.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Adulto , Conjuntos de Dados como Assunto , Humanos
14.
Neuroimage ; 200: 221-230, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31238165

RESUMO

The default-mode network (DMN) and its principal core hubs in the posterior midline cortices (PMC), i.e., the precuneus and the posterior cingulate cortex, play a critical role in the human brain structural and functional architecture. Because of their centrality, they are affected by a wide spectrum of brain disorders, e.g., Alzheimer's disease. Non-invasive electrophysiological techniques such as magnetoencephalography (MEG) are crucial to the investigation of the neurophysiology of the DMN and its alteration by brain disorders. However, MEG studies relying on band-limited power envelope correlation diverge in their ability to identify the PMC as a part of the DMN in healthy subjects at rest. Since these works were based on different MEG recording systems and different source reconstruction pipelines, we compared DMN functional connectivity estimated with two distinct MEG systems (Elekta, now MEGIN, and CTF) and two widely used reconstruction algorithms (Minimum Norm Estimation and linearly constrained minimum variance Beamformer). Our results identified the reconstruction method as the critical factor influencing PMC functional connectivity, which was significantly dampened by the Beamformer. On this basis, we recommend that future electrophysiological studies on the DMN should rely on Minimum Norm Estimation (or close variants) rather than on the classical Beamformer. Crucially, based on analytic knowledge about these two reconstruction algorithms, we demonstrated with simulations that this empirical observation could be explained by the existence of a spontaneous linear, approximately zero-lag synchronization structure between areas of the DMN or among multiple sources within the PMC. This finding highlights a novel property of the neural dynamics and functional architecture of a core human brain network at rest.


Assuntos
Conectoma/métodos , Giro do Cíngulo/fisiologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Magnetoencefalografia/instrumentação , Masculino , Adulto Jovem
15.
Brain Topogr ; 32(6): 1020-1034, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31754933

RESUMO

Electrophysiological recordings of neuronal activity show spontaneous and task-dependent changes in their frequency-domain power spectra. These changes are conventionally interpreted as modulations in the amplitude of underlying oscillations. However, this overlooks the possibility of underlying transient spectral 'bursts' or events whose dynamics can map to changes in trial-average spectral power in numerous ways. Under this emerging perspective, a key challenge is to perform burst detection, i.e. to characterise single-trial transient spectral events, in a principled manner. Here, we describe how transient spectral events can be operationalised and estimated using Hidden Markov Models (HMMs). The HMM overcomes a number of the limitations of the standard amplitude-thresholding approach to burst detection; in that it is able to concurrently detect different types of bursts, each with distinct spectral content, without the need to predefine frequency bands of interest, and does so with less dependence on a priori threshold specification. We describe how the HMM can be used for burst detection and illustrate its benefits on simulated data. Finally, we apply this method to empirical data to detect multiple burst types in a task-MEG dataset, and illustrate how we can compute burst metrics, such as the task-evoked timecourse of burst duration.


Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Fenômenos Eletrofisiológicos , Humanos , Cadeias de Markov , Modelos Neurológicos
16.
Neuroimage ; 180(Pt B): 646-656, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28669905

RESUMO

Brain activity is a dynamic combination of the responses to sensory inputs and its own spontaneous processing. Consequently, such brain activity is continuously changing whether or not one is focusing on an externally imposed task. Previously, we have introduced an analysis method that allows us, using Hidden Markov Models (HMM), to model task or rest brain activity as a dynamic sequence of distinct brain networks, overcoming many of the limitations posed by sliding window approaches. Here, we present an advance that enables the HMM to handle very large amounts of data, making possible the inference of very reproducible and interpretable dynamic brain networks in a range of different datasets, including task, rest, MEG and fMRI, with potentially thousands of subjects. We anticipate that the generation of large and publicly available datasets from initiatives such as the Human Connectome Project and UK Biobank, in combination with computational methods that can work at this scale, will bring a breakthrough in our understanding of brain function in both health and disease.


Assuntos
Big Data , Encéfalo/fisiologia , Cadeias de Markov , Rede Nervosa/fisiologia , Mapeamento Encefálico/métodos , Humanos , Vias Neurais/fisiologia , Descanso/fisiologia
17.
Neuroimage ; 126: 81-95, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26631815

RESUMO

The brain is capable of producing coordinated fast changing neural dynamics across multiple brain regions in order to adapt to rapidly changing environments. However, it is non-trivial to identify multiregion dynamics at fast sub-second time-scales in electrophysiological data. We propose a method that, with no knowledge of any task timings, can simultaneously identify and describe fast transient multiregion dynamics in terms of their temporal, spectral and spatial properties. The approach models brain activity using a discrete set of sequential states, with each state distinguished by its own multiregion spectral properties. This can identify potentially very short-lived visits to a brain state, at the same time as inferring the state's properties, by pooling over many repeated visits to that state. We show how this can be used to compute state-specific measures such as power spectra and coherence. We demonstrate that this can be used to identify short-lived transient brain states with distinct power and functional connectivity (e.g., coherence) properties in an MEG data set collected during a volitional motor task.


Assuntos
Ondas Encefálicas/fisiologia , Neuroimagem Funcional/métodos , Magnetoencefalografia/métodos , Córtex Motor/fisiologia , Adulto , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Modelos Teóricos , Atividade Motora/fisiologia , Adulto Jovem
18.
Hosp Pract (1995) ; 52(1-2): 19-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38407180

RESUMO

OBJECTIVES: Use of proton pump inhibitors (PPIs) is a mainstay in treating upper gastrointestinal bleeding (UGIB). However, the beneficial effects of PPIs are not anticipated to extend beyond the duodenum and may actually contribute to the risk of lower gastrointestinal bleeding (LGIB). However, in practice, PPIs are often used for inpatients with LGIB where no benefit exists. METHODS: A retrospective chart review was performed on inpatients during a 2-year period at an urban academic teaching hospital. Inpatients with consults to the gastroenterology (GI) service with confirmed or highly suspected LGIB were included. Outcomes regarding PPI use and the GI consulting service recommendations in these 225 patients were evaluated. RESULTS: About 37.8% of patients were started on a PPI during their inpatient course. Of those, 46% patients started on a PPI had no indication for PPI and 85% had no recommendation by the GI consultants to start a PPI. Of the 85 patients started on PPI, the GI consultants recommended stopping it in two (2.3%) patients. Lastly, 20 patients (9%) were discharged on PPI without an indication for PPI. CONCLUSION: To our knowledge, this is the first study that looked at the inappropriate utilization of PPIs in patients admitted for LGIBs utilizing GI consultant recommendations. Given the large proportion of patients started on PPI without a clinical indication and continued at discharge and the paucity of GI recommendations to discontinue inappropriate use, we found that clinical care may be improved with formal GI recommendations regarding use of PPI.


Assuntos
Hemorragia Gastrointestinal , Prescrição Inadequada , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/administração & dosagem , Estudos Retrospectivos , Masculino , Hemorragia Gastrointestinal/tratamento farmacológico , Feminino , Prescrição Inadequada/prevenção & controle , Prescrição Inadequada/estatística & dados numéricos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hospitais de Ensino , Hospitalização/estatística & dados numéricos , Adulto
19.
Brain Commun ; 6(1): fcae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344655

RESUMO

Motor recovery is still limited for people with stroke especially those with greater functional impairments. In order to improve outcome, we need to understand more about the mechanisms underpinning recovery. Task-unbiased, blood flow-independent post-stroke neural activity can be acquired from resting brain electrophysiological recordings and offers substantial promise to investigate physiological mechanisms, but behaviourally relevant features of resting-state sensorimotor network dynamics have not yet been identified. Thirty-seven people with subcortical ischaemic stroke and unilateral hand paresis of any degree were longitudinally evaluated at 3 weeks (early subacute) and 12 weeks (late subacute) after stroke. Resting-state magnetoencephalography and clinical scores of motor function were recorded and compared with matched controls. Magnetoencephalography data were decomposed using a data-driven hidden Markov model into 10 time-varying resting-state networks. People with stroke showed statistically significantly improved Action Research Arm Test and Fugl-Meyer upper extremity scores between 3 weeks and 12 weeks after stroke (both P < 0.001). Hidden Markov model analysis revealed a primarily alpha-band ipsilesional resting-state sensorimotor network which had a significantly increased life-time (the average time elapsed between entering and exiting the network) and fractional occupancy (the occupied percentage among all networks) at 3 weeks after stroke when compared with controls. The life-time of the ipsilesional resting-state sensorimotor network positively correlated with concurrent motor scores in people with stroke who had not fully recovered. Specifically, this relationship was observed only in ipsilesional rather in contralesional sensorimotor network, default mode network or visual network. The ipsilesional sensorimotor network metrics were not significantly different from controls at 12 weeks after stroke. The increased recruitment of alpha-band ipsilesional resting-state sensorimotor network at subacute stroke served as functionally correlated biomarkers exclusively in people with stroke with not fully recovered hand paresis, plausibly reflecting functional motor recovery processes.

20.
Elife ; 122024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285016

RESUMO

Neural activity contains rich spatiotemporal structure that corresponds to cognition. This includes oscillatory bursting and dynamic activity that span across networks of brain regions, all of which can occur on timescales of tens of milliseconds. While these processes can be accessed through brain recordings and imaging, modeling them presents methodological challenges due to their fast and transient nature. Furthermore, the exact timing and duration of interesting cognitive events are often a priori unknown. Here, we present the OHBA Software Library Dynamics Toolbox (osl-dynamics), a Python-based package that can identify and describe recurrent dynamics in functional neuroimaging data on timescales as fast as tens of milliseconds. At its core are machine learning generative models that are able to adapt to the data and learn the timing, as well as the spatial and spectral characteristics, of brain activity with few assumptions. osl-dynamics incorporates state-of-the-art approaches that can be, and have been, used to elucidate brain dynamics in a wide range of data types, including magneto/electroencephalography, functional magnetic resonance imaging, invasive local field potential recordings, and electrocorticography. It also provides novel summary measures of brain dynamics that can be used to inform our understanding of cognition, behavior, and disease. We hope osl-dynamics will further our understanding of brain function, through its ability to enhance the modeling of fast dynamic processes.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Tetranitrato de Pentaeritritol , Encéfalo/diagnóstico por imagem , Cognição , Eletrocorticografia , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA