RESUMO
Immunosuppression in aqueous-deficient dry eye disease (ADDE) is required not only to improve the symptoms and signs but also to prevent further progression of the disease and its sight-threatening sequelae. This immunomodulation can be achieved through topical and/or systemic medications, and the choice of one drug over the other is determined by the underlying systemic disease. These immunosuppressive agents require a minimum of 6-8 weeks to achieve their beneficial effect, and during this time, the patient is usually placed on topical corticosteroids. Antimetabolites such as methotrexate, azathioprine, and mycophenolate mofetil, along with calcineurin inhibitors, are commonly used as first-line medications. The latter have a pivotal role in immunomodulation since T cells contribute significantly to the pathogenesis of ocular surface inflammation in dry eye disease. Alkylating agents are largely limited to controlling acute exacerbations with pulse doses of cyclophosphamide. Biologic agents, such as rituximab, are particularly useful in patients with refractory disease. Each group of drugs has its own side-effect profiles and requires a stringent monitoring schedule that must be followed to prevent systemic morbidity. A customized combination of topical and systemic medications is usually required to achieve adequate control, and this review aims to help the clinician choose the most appropriate modality and monitoring regimen for a given case of ADDE.
Assuntos
Síndromes do Olho Seco , Imunossupressores , Humanos , Azatioprina/uso terapêutico , Síndromes do Olho Seco/tratamento farmacológico , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Inflamação , Metotrexato/uso terapêuticoRESUMO
Despite the exciting advancement of novel therapies, chronic graft-versus-host disease (cGVHD) remains the most common cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation (HCT). Frontline treatment of cGVHD involves systemic steroids, which are associated with significant morbidities. We previously found that inhibition of spleen tyrosine kinase (SYK) with fostamatinib preferentially eradicated aberrantly activated B cells in both ex vivo studies of cGVHD patient B cells, as well as in vivo mouse studies. These and other preclinical studies implicated hyper-reactive B-cell receptor signaling and increased SYK expression in the pathogenesis of cGVHD and compelled this first in-human allogeneic HCT clinical trial. We investigated the safety and efficacy of the oral SYK inhibitor, fostamatinib, for both the prevention and treatment of cGVHD. The primary objective was to evaluate the safety of fostamatinib and determine its maximum tolerated dose in the post-HCT setting. Secondary objectives included assessing the efficacy of fostamatinib in preventing and treating cGVHD, as well as examining alterations in B-cell compartments with treatment. This was a single-institution phase I clinical trial that evaluated the use of fostamatinib in allogeneic HCT patients before the development of cGVHD or at the time of steroid-refractory cGVHD (SR-cGVHD). Patients received fostamatinib at one of three dose levels using a continual reassessment algorithm to determine the maximum tolerated dose. Multiparameter flow cytometry was used to evaluate changes in B cell subpopulations over the first year of treatment with fostamatinib. Nineteen patients were enrolled in this phase I trial, with 5 in the prophylaxis arm and 14 in the therapeutic arm. One patient (5%) required discontinuation of therapy for a dose-limiting toxicity. At a median follow-up of over 3 years, no patients had cancer relapse while on fostamatinib treatment, and recurrent malignancy was observed in 1 patient 2 years after the end of therapy. In the prophylaxis arm, 1 of 5 patients (20%) developed cGVHD while on fostamatinib. In the therapeutic arm, the overall response rate was 77%, with a complete response rate of 31%. The median duration of response was 19.3 months and the 12-month failure-free survival was 69% (95% confidence interval, 48-100). Patients were able to reduce their steroid dose by a median of 80%, with 73% remaining on a lower dose at 1 year compared to baseline. There was an early reduction in the proportion of IgD-CD38hi plasmablast-like cells with fostamatinib treatment, particularly in those SR-cGVHD patients who had an eventual response. B-cell reconstitution was not significantly impacted by fostamatinib therapy after allogeneic HCT. Fostamatinib featured a favorable safety profile in the post-HCT setting. Our data suggests an early efficacy signal that was associated with effects on expected cell targets in both the prophylaxis and treatment of cGVHD, providing rationale for a phase II investigation.