Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 174(2): 448-464.e24, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007417

RESUMO

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.


Assuntos
Chara/genética , Genoma de Planta , Evolução Biológica , Parede Celular/metabolismo , Chara/crescimento & desenvolvimento , Embriófitas/genética , Redes Reguladoras de Genes , Pentosiltransferases/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
2.
EMBO J ; 42(11): e111926, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071525

RESUMO

Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas
3.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217857

RESUMO

Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism. This article has an associated 'The people behind the papers' interview.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regeneração/genética , Transdução de Sinais/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transporte Biológico/genética , Cotilédone/genética , Cotilédone/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/fisiologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas
4.
J Exp Bot ; 74(9): 2912-2931, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36449391

RESUMO

Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.


Assuntos
Arabidopsis , Hordeum , Temperatura , Alelos , Melhoramento Vegetal , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Flores/genética
5.
J Exp Bot ; 74(12): 3630-3650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37010230

RESUMO

EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be essential for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for 10 developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared with the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme effects on phenology could be attributed to one exotic ELF3 allele differing from the cultivated Barke ELF3 allele in only one single nucleotide polymorphism (SNP). This SNP causes an amino acid substitution (W669G), which as predicted has an impact on the protein structure of ELF3. Consequently, it may affect phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also its local cellular interactions causing significant trait differences between HIF sister lines.


Assuntos
Hordeum , Locos de Características Quantitativas , Mapeamento Cromossômico , Hordeum/genética , Alelos , Melhoramento Vegetal , Desenvolvimento Vegetal
6.
J Exp Bot ; 73(3): 1049-1061, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34698833

RESUMO

Daily changes in light and temperature are major entrainment cues that enable the circadian clock to generate internal biological rhythms that are synchronized with the external environment. With the average global temperature predicted to keep increasing, the intricate light-temperature coordination that is necessary for clock functionality is expected to be seriously affected. Hence, understanding how temperature signals are perceived by the circadian clock has become an important issue. In Arabidopsis, the clock component EARLY FLOWERING 3 (ELF3) not only serves as a light Zeitnehmer, but also functions as a thermosensor participating in thermomorphogenesis. However, the role of ELF3 in temperature entrainment of the circadian clock is not fully understood. Here, we report that ELF3 is essential for delivering temperature input to the clock. We demonstrate that in the absence of ELF3, the oscillator is unable to respond to temperature changes, resulting in an impaired gating of thermoresponses. Consequently, clock-controlled physiological processes such as rhythmic growth and cotyledon movement were disturbed. Genetic analyses suggest that the evening complex is not required for ELF3-controlled thermoresponsiveness. Together, our results reveal that ELF3 is an essential Zeitnehmer for temperature sensing of the oscillator, and thereby for coordinating the rhythmic control of thermoresponsive physiological outputs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Biodiversidade , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Temperatura , Fatores de Transcrição/metabolismo
7.
Plant J ; 101(6): 1397-1410, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31694066

RESUMO

ELF3 and GI are two important components of the Arabidopsis circadian clock. They are not only essential for the oscillator function but are also pivotal in mediating light inputs to the oscillator. Lack of either results in a defective oscillator causing severely compromised output pathways, such as photoperiodic flowering and hypocotyl elongation. Although single loss of function mutants of ELF3 and GI have been well studied, their genetic interaction remains unclear. We generated an elf3 gi double mutant to study their genetic relationship in clock-controlled growth and phase transition phenotypes. We found that ELF3 and GI repress growth differentially during the night and the day, respectively. Circadian clock assays revealed that ELF3 and GI are essential that enable the oscillator to synchronize the endogenous cellular mechanisms to external environmental signals. In their absence, the circadian oscillator fails to synchronize to the light-dark cycles even under diurnal conditions. Consequently, clock-mediated photoperiod-responsive growth and development are completely lost in plants lacking both genes, suggesting that ELF3 and GI together convey photoperiod sensing to the central oscillator. Since ELF3 and GI are conserved across flowering plants and represent important breeding and domestication targets, our data highlight the possibility of developing photoperiod-insensitive crops by adjusting the allelic combination of these two key genes.


Assuntos
Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Flores/fisiologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/fisiologia , Fotoperíodo , Fatores de Transcrição/fisiologia
8.
J Exp Bot ; 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33974686

RESUMO

Various strategies evolved in plants to adjust the position of organs relative to the prevailing temperature condition, which allows optimal plant growth and performance. Such responses are classically separated into nastic and tropic responses. During plant thermotropic responses, organs move towards (engage) or away (avoid) from a directional temperature cue. Despite thermotropism being a classic botanical concept, the underlying ecological function and molecular and biophysical mechanisms remain poorly understood to this day. This contrasts to the relatively well-studied thermonastic movements (hyponasty) of e.g., rosette leaves. In this review, we provide an update on the current knowledge on plant thermotropisms and propose directions for future research and application.

9.
J Exp Bot ; 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190313

RESUMO

Plants have a remarkable capacity to acclimate to their environment. Acclimation is enabled to a large degree by phenotypic plasticity, the extent of which confers a selective advantage, especially in natural habitats. Certain key events in evolution triggered adaptive bursts necessary to cope with drastic environmental changes. One such event was the colonization of land 400-500 mya. Compared to most aquatic habitats, fluctuations in abiotic parameters became more pronounced, generating significant selection pressure. To endure these harsh conditions, plants needed to adapt their physiology and morphology and to increase the range of phenotypic plasticity. In addition to drought stress and high light, high temperatures and fluctuation thereof were among the biggest challenges faced by terrestrial plants. Thermomorphogenesis research has emerged as a new sub-discipline of the plant sciences and aims to understand how plants acclimate to elevated ambient temperatures through changes in architecture. While we have begun to understand how angiosperms sense and respond to elevated ambient temperature, very little is known about thermomorphogenesis in plant lineages with less complex body plans. It is unclear when thermomorphogenesis initially evolved and how this depended on morphological complexity. In this review, we take an evolutionary-physiological perspective and generate hypotheses about the emergence of thermomorphogenesis.

10.
Plant Physiol ; 180(2): 757-766, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000634

RESUMO

Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls, and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by the generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl, where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl.


Assuntos
Cotilédone/fisiologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Temperatura , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hipocótilo/citologia , Morfogênese , Especificidade de Órgãos/genética
11.
Bioinformatics ; 34(9): 1589-1590, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309527

RESUMO

Motivation: Next Generation Sequencing (NGS) technologies generate a large amount of high quality transcriptome datasets enabling the investigation of molecular processes on a genomic and metagenomic scale. These transcriptomics studies aim to quantify and compare the molecular phenotypes of the biological processes at hand. Despite the vast increase of available transcriptome datasets, little is known about the evolutionary conservation of those characterized transcriptomes. Results: The myTAI package implements exploratory analysis functions to infer transcriptome conservation patterns in any transcriptome dataset. Comprehensive documentation of myTAI functions and tutorial vignettes provide step-by-step instructions on how to use the package in an exploratory and computationally reproducible manner. Availability and implementation: The open source myTAI package is available at https://github.com/HajkD/myTAI and https://cran.r-project.org/web/packages/myTAI/index.html. Contact: hgd23@cam.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Transcriptoma , Evolução Biológica , Genômica , Software
12.
Nature ; 490(7418): 98-101, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22951968

RESUMO

Animal and plant development starts with a constituting phase called embryogenesis, which evolved independently in both lineages. Comparative anatomy of vertebrate development--based on the Meckel-Serrès law and von Baer's laws of embryology from the early nineteenth century--shows that embryos from various taxa appear different in early stages, converge to a similar form during mid-embryogenesis, and again diverge in later stages. This morphogenetic series is known as the embryonic 'hourglass', and its bottleneck of high conservation in mid-embryogenesis is referred to as the phylotypic stage. Recent analyses in zebrafish and Drosophila embryos provided convincing molecular support for the hourglass model, because during the phylotypic stage the transcriptome was dominated by ancient genes and global gene expression profiles were reported to be most conserved. Although extensively explored in animals, an embryonic hourglass has not been reported in plants, which represent the second major kingdom in the tree of life that evolved embryogenesis. Here we provide phylotranscriptomic evidence for a molecular embryonic hourglass in Arabidopsis thaliana, using two complementary approaches. This is particularly significant because the possible absence of an hourglass based on morphological features in plants suggests that morphological and molecular patterns might be uncoupled. Together with the reported developmental hourglass patterns in animals, these findings indicate convergent evolution of the molecular hourglass and a conserved logic of embryogenesis across kingdoms.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Desenvolvimento Vegetal/genética , Transcriptoma/genética , Animais , Arabidopsis/classificação , Brassicaceae/genética , Sequência Conservada/genética , Biologia do Desenvolvimento , Drosophila/embriologia , Drosophila/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Perfilação da Expressão Gênica , Genes de Plantas/genética , Modelos Biológicos , Peixe-Zebra/embriologia
13.
Mol Biol Evol ; 33(5): 1158-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912813

RESUMO

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Desenvolvimento Vegetal/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Transcriptoma
14.
BMC Plant Biol ; 17(1): 114, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683779

RESUMO

BACKGROUND: Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. RESULTS: Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. CONCLUSION: Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Interação Gene-Ambiente , Temperatura , Genótipo
15.
J Exp Bot ; 68(3): 539-552, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007950

RESUMO

Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Transdução de Sinais
16.
Mol Biol Evol ; 32(5): 1221-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25631928

RESUMO

The developmental hourglass model has been used to describe the morphological transitions of related species throughout embryogenesis. Recently, quantifiable approaches combining transcriptomic and evolutionary information provided novel evidence for the presence of a phylotranscriptomic hourglass pattern across kingdoms. As its biological function is unknown it remains speculative whether this pattern is functional or merely represents a nonfunctional evolutionary relic. The latter would seriously hamper future experimental approaches designed to test hypotheses regarding its function. Here, we address this question by generating transcriptome divergence index (TDI) profiles across embryogenesis of Danio rerio, Drosophila melanogaster, and Arabidopsis thaliana. To enable meaningful evaluation of the resulting patterns, we develop a statistical test that specifically assesses potential hourglass patterns. Based on this objective measure we find that two of these profiles follow a statistically significant hourglass pattern with the most conserved transcriptomes in the phylotypic periods. As the TDI considers only recent evolutionary signals, this indicates that the phylotranscriptomic hourglass pattern is not a rudiment but possibly actively maintained, implicating the existence of some linked biological function associated with embryogenesis in extant species.


Assuntos
Arabidopsis/genética , Drosophila melanogaster/genética , Evolução Molecular , Peixe-Zebra/genética , Animais , Arabidopsis/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , Filogenia , Desenvolvimento Vegetal/genética , Transcriptoma/genética , Peixe-Zebra/crescimento & desenvolvimento
17.
Plant J ; 79(1): 92-105, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24779768

RESUMO

The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S-glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP-glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1-2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Regulação Enzimológica da Expressão Gênica , Glucosinolatos/biossíntese , Glucosiltransferases/genética , Adaptação Fisiológica , Alelos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Análise Mutacional de DNA , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes Reporter , Glucosiltransferases/metabolismo , Mutação , Fenótipo , Filogenia , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/enzimologia , Componentes Aéreos da Planta/genética , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/enzimologia , Plântula/genética
18.
BMC Genomics ; 16: 488, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126740

RESUMO

BACKGROUND: The formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thaliana on a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to close this information gap and to generate a reference dataset for stage-specific gene expression during flower formation. RESULTS: Using a floral induction system, we collected floral buds at 14 different stages from the time of initiation until maturation. Using whole-genome microarray analysis, we identified 7,405 genes that exhibit rapid expression changes during flower development. These genes comprise many known floral regulators and we found that the expression profiles for these regulators match their known expression patterns, thus validating the dataset. We analyzed groups of co-expressed genes for over-represented cellular and developmental functions through Gene Ontology analysis and found that they could be assigned specific patterns of activities, which are in agreement with the progression of flower development. Furthermore, by mapping binding sites of floral organ identity factors onto our dataset, we were able to identify gene groups that are likely predominantly under control of these transcriptional regulators. We further found that the distribution of paralogs among groups of co-expressed genes varies considerably, with genes expressed predominantly at early and intermediate stages of flower development showing the highest proportion of such genes. CONCLUSIONS: Our results highlight and describe the dynamic expression changes undergone by a large number of genes during flower development. They further provide a comprehensive reference dataset for temporal gene expression during flower formation and we demonstrate that it can be used to integrate data from other genomics approaches such as genome-wide localization studies of transcription factor binding sites.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Arabidopsis/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos
19.
BMC Plant Biol ; 15: 197, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26269119

RESUMO

BACKGROUND: Perception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis. RESULTS: We identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth. CONCLUSIONS: In combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Fatores de Transcrição/genética , Adaptação Fisiológica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fotoperíodo , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo
20.
Plant Physiol ; 163(1): 205-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23858430

RESUMO

Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa, endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that lead to seed germination. We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seeds with both temporal and spatial detail and provide Web-accessible visualizations of the data reported (vseed.nottingham.ac.uk). We show the potential of this high-resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination. The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase. Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Germinação/genética , Transcrição Gênica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Sementes/genética , Sementes/crescimento & desenvolvimento , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA