Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447901

RESUMO

Using a novel mathematical tool called the Te-gram, researchers analyzed the energy distribution of frequency components in the scale-frequency plane. Through this analysis, a frequency band of approximately 12 Hz is identified, which can be isolated without distorting its constituent frequencies. This band, along with others, remained inseparable through conventional time-frequency analysis methods. The Te-gram successfully addresses this knowledge gap, providing multi-sensitivity in the frequency domain and effectively attenuating cross-term energy. The Daubechies 45 wavelet function was employed due to its exceptional 150 dB attenuation in the rejection band. The validation process encompassed three stages: pre-, during-, and post-seismic activity. The utilized signal corresponds to the 19 September 2017 earthquake, occurring between the states of Morelos and Puebla, Mexico. The results showcased the impressive ability of the Te-gram to surpass expectations in terms of sensitivity and energy distribution within the frequency domain. The Te-gram outperformed the procedures documented in the existing literature. On the other hand, the results show a frequency band between 0.7 Hz and 1.75 Hz, which is named the planet Earth noise.


Assuntos
Acústica , Ruído , Meio Ambiente , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA