Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(3): 031601, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307052

RESUMO

We report the results of Phase 1b of the ORGAN experiment, a microwave cavity haloscope searching for dark matter axions in the 107.42-111.93 µeV mass range. The search excludes axions with two-photon coupling g_{aγγ}≥4×10^{-12} GeV^{-1} with 95% confidence interval, setting the best upper bound to date and with the required sensitivity to exclude the axionlike particle cogenesis model for dark matter in this range. This result was achieved using a tunable rectangular cavity, which mitigated several practical issues that become apparent when conducting high-mass axion searches, and was the first such axion search to be conducted with such a cavity. It also represents the most sensitive axion haloscope experiment to date in the ∼100 µeV mass region.

2.
Sci Adv ; 8(27): eabq3765, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857478

RESUMO

The standard model axion seesaw Higgs portal inflation (SMASH) model is a well-motivated, self-contained description of particle physics that predicts axion dark matter particles to exist within the mass range of 50 to 200 micro-electron volts. Scanning these masses requires an axion haloscope to operate under a constant magnetic field between 12 and 48 gigahertz. The ORGAN (Oscillating Resonant Group AxioN) experiment (in Perth, Australia) is a microwave cavity axion haloscope that aims to search the majority of the mass range predicted by the SMASH model. Our initial phase 1a scan sets an upper limit on the coupling of axions to two photons of ∣gaγγ∣ ≤ 3 × 10-12 per giga-electron volts over the mass range of 63.2 to 67.1 micro-electron volts with 95% confidence interval. This highly sensitive result is sufficient to exclude the well-motivated axion-like particle cogenesis model for dark matter in the searched region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA