Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Virol J ; 21(1): 17, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216938

RESUMO

Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Dependovirus/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Vetores Genéticos/genética , Terapia Genética/métodos
2.
Virol J ; 21(1): 124, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822328

RESUMO

Cervical cancer (CC) and other malignant malignancies are acknowledged to be primarily caused by persistent human papillomavirus (HPV) infection. Historically, vaccinations against viruses that produce neutralizing antibodies unique to the virus have been an affordable way to manage viral diseases. CC risk is decreased, but not eliminated, by HPV vaccinations. Since vaccinations have been made available globally, almost 90% of HPV infections have been successfully avoided. On the lesions and diseases that are already present, however, no discernible treatment benefit has been shown. As a result, therapeutic vaccines that elicit immune responses mediated by cells are necessary for the treatment of established infections and cancers. mRNA vaccines possess remarkable potential in combating viral diseases and malignancy as a result of their superior industrial production, safety, and efficacy. Furthermore, considering the expeditiousness of production, the mRNA vaccine exhibits promise as a therapeutic approach targeting HPV. Given that the HPV-encoded early proteins, including oncoproteins E6 and E7, are consistently present in HPV-related cancers and pre-cancerous lesions and have crucial functions in the progression and persistence of HPV-related diseases, they serve as ideal targets for therapeutic HPV vaccines. The action mechanism of HPV and HPV-related cancer mRNA vaccines, their recent advancements in clinical trials, and the potential for their therapeutic applications are highlighted in this study, which also offers a quick summary of the present state of mRNA vaccines. Lastly, we highlight a few difficulties with mRNA HPV vaccination clinical practice and provide our thoughts on further advancements in this quickly changing sector. It is expected that mRNA vaccines will soon be produced quickly for clinical HPV prevention and treatment.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas de mRNA , Humanos , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/terapia , Feminino , Papillomaviridae/imunologia , Papillomaviridae/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , Papillomavirus Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA