Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 15(38): e1902811, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31373758

RESUMO

Tin diselenide (SnSe2 ) nanosheets as novel 2D layered materials have excellent optical properties with many promising application prospects, such as photoelectric detectors, nonlinear optics, infrared photoelectric devices, and ultrafast photonics. Among them, ultrafast photonics has attracted much attention due to its enormous advantages; for instance, extremely fast pulse, strong peak power, and narrow bandwidth. In this work, SnSe2 nanosheets are fabricated by using solvothermal treatment, and the characteristics of SnSe2 are systemically investigated. In addition, the solution of SnSe2 nanosheets is successfully prepared as a fiber-based saturable absorber by utilizing the evanescent field effect, which can bear a high pump power. 31st-order subpicosecond harmonic mode locking is generated in an Er-doped fiber laser, corresponding to the maximum repetition rate of 257.3 MHz and pulse duration of 887 fs. The results show that SnSe2 can be used as an excellent nonlinear photonic device in many fields, such as frequency comb, lasers, photodetectors, etc.

2.
Nanotechnology ; 31(8): 085202, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675743

RESUMO

Nanoparticle materials have many potential applications in the area of electronics and optoelectronics due to their unique and versatile properties. In particular, lead sulfide nanoparticles (PbS NPs) have shown excellent ultrafast photonics and can be applied to communication systems because of their low bandgap, high thermal damage threshold and stability. The wavelength division multiplexor (WDM) technique is vital to fiber optical communication, which allows the transmission of many different-wavelength signals in one fiber cable. However, PbS NPs for multi-wavelength pulse generation has not been reported until now. In this work, PbS NPs have been investigated and successfully applied in an Er-doped fiber laser as a saturable absorber (SA) to generate a dual-wavelength short pulse for the first time. A picosecond-level ultrashort pulse at center wavelengths of 1545 and 1585 nm can be achieved simultaneously or respectively. It is worth mentioning that the two wavelengths are separated up to 40 nm, which can significantly expand the optical communication capacity. The result suggests that PbS NPs as smart nonlinear optical components have wide applications in optical communications, short-pulse lasers, and even high-performance photodectors.

3.
Front Optoelectron ; 13(2): 149-155, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36641554

RESUMO

In this paper, we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers. We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm. The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW. As far as we know, this is the firsttimethatFe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse. Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.

4.
Beilstein J Nanotechnol ; 10: 1065-1072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165033

RESUMO

Fe3O4 nanoparticles (FONPs) are magnetic materials with a small band gap and have well-demonstrated applications in ultrafast photonics, medical science, magnetic detection, and electronics. Very recently, FONPs were proposed as an ideal candidate for pulse generation in fiber-based oscillators. However, the pulses obtained to date are on the order of microseconds, which is too long for real application in communication. Here, we report the use of FONPs synthesized by a sol-hydrothermal method and used as a saturable absorber (SA) to achieve nanosecond pulses in an erbium-doped fiber laser (EDFL) for the first time. The proposed fiber laser is demonstrated to have a narrow spectral width of around 0.8 nm and a fixed fundamental repetition rate (RPR) of 4.63 MHz, whose spectra and pulse dynamics are different from the mode-locked lasers reported previously. It is demonstrated that the proposed fiber laser based on a FONP SA operates in the giant-chirp mode-locked regime. The most important result is the demonstration of a pulse duration of 55 ns at an output power of 16.2 mW, which is the shortest pulse based on FONPs for EDFLs reported to date. Our results demonstrate that the FONP dispersion allows for an excellent photonic material for application in ultrafast photonics devices, photoconductive detectors, and optical modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA