Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(21): 14968-14978, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34644501

RESUMO

We report a new, autonomous Lab-on-Chip (LOC) microfluidic pH sensor with a 6000 m depth capability, ten times the depth capability of the state of the art autonomous spectrophotometric sensor. The pH is determined spectrophotometrically using purified meta-Cresol Purple indicator dye offering high precision (<0.001 pH unit measurement reproducibility), high frequency (every 8 min) measurements on the total proton scale from the surface to the deep ocean (to 600 bar). The sensor requires low power (3 W during continuous operation or ∼1300 J per measurement) and low reagent volume (∼3 µL per measurement) and generates small waste volume (∼2 mL per measurement) which can be retained during deployments. The performance of the LOC pH sensor was demonstrated on fixed and moving platforms over varying environmental salinity, temperature, and pressure conditions. Measurement accuracy was +0.003 ± 0.022 pH units (n = 47) by comparison with validation seawater sample measurements in coastal waters. The combined standard uncertainty of the sensor in situ pHT measurements was estimated to be ≤0.009 pH units at pH 8.5, ≤ 0.010 pH units at pH 8.0, and ≤0.014 pH units at pH 7.5. Integrated on autonomous platforms, this novel sensor opens new frontiers for pH observations, especially within the largest and most understudied ecosystem on the planet, the deep ocean.


Assuntos
Ecossistema , Água do Mar , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Espectrofotometria
2.
Sensors (Basel) ; 18(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103397

RESUMO

Increasing atmospheric CO2 concentrations are resulting in a reduction in seawater pH, with potential detrimental consequences for marine organisms. Improved efforts are required to monitor the anthropogenically driven pH decrease in the context of natural pH variations. We present here a high resolution surface water pH data set obtained in summer 2011 in North West European Shelf Seas. The aim of our paper is to demonstrate the successful deployment of the pH sensor, and discuss the carbonate chemistry dynamics of surface waters of Northwest European Shelf Seas using pH and ancillary data. The pH measurements were undertaken using spectrophotometry with a Lab-on-Chip pH sensor connected to the underway seawater supply of the ship. The main processes controlling the pH distribution along the ship's transect, and their relative importance, were determined using a statistical approach. The pH sensor allowed 10 measurements h-1 with a precision of 0.001 pH units and a good agreement with pH calculated from a pair of discretely sampled carbonate variables dissolved inorganic carbon (DIC), total alkalinity (TA) and partial pressure of CO2 (pCO2) (e.g., pHDICpCO2). For this summer cruise, the biological activity formed the main control on the pH distribution along the cruise transect. This study highlights the importance of high quality and high resolution pH measurements for the assessment of carbonate chemistry dynamics in marine waters.

3.
Sci Rep ; 7(1): 2481, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28559544

RESUMO

Accurate pH measurements in polar waters and sea ice brines require pH indicator dyes characterized at near-zero and below-zero temperatures and high salinities. We present experimentally determined physical and chemical characteristics of purified meta-Cresol Purple (mCP) pH indicator dye suitable for pH measurements in seawater and conservative seawater-derived brines at salinities (S) between 35 and 100 and temperatures (T) between their freezing point and 298.15 K (25 °C). Within this temperature and salinity range, using purified mCP and a novel thermostated spectrophotometric device, the pH on the total scale (pHT) can be calculated from direct measurements of the absorbance ratio R of the dye in natural samples as[Formula: see text] Based on the mCP characterization in these extended conditions, the temperature and salinity dependence of the molar absorptivity ratios and - [Formula: see text] of purified mCP is described by the following functions: e 1 = -0.004363 + 3.598 × 10-5 T, e 3/e 2 = -0.016224 + 2.42851 × 10-4 T + 5.05663 × 10-5(S - 35), and - [Formula: see text] = -319.8369 + 0.688159 S -0.00018374 S 2 + (10508.724 - 32.9599 S + 0.059082S 2) T-1 + (55.54253 - 0.101639 S) ln T -0.08112151T. This work takes the characterisation of mCP beyond the currently available ranges of 278.15 K ≤ T ≤ 308.15 K and 20 ≤ S ≤ 40 in natural seawater, thereby allowing high quality pHT measurements in polar systems.

4.
Anal Chim Acta ; 897: 69-80, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515007

RESUMO

The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 µs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel fluorescence spots with improved response time and apparent pKa values closer to the pH of surface ocean waters.

5.
Anal Chim Acta ; 786: 124-31, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23790301

RESUMO

High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ship's underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used instead of the current USB mini spectrophotometer. Artefacts due to the polychromatic light source and inhomogeneity in the absorption cell are shown to have a negligible impact on the data quality. The next step in the miniaturization of the sensor will be the incorporation of a photodiode as detector to replace the spectrophotometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA