Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Cell Sci ; 137(15)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38988298

RESUMO

Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, ß-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of ß-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither ß-H-Spectrin nor Big bang require microtubules for their localisation. ß-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of ß-H-Spectrin (ß-H-33) displaces endogenous ß-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.


Assuntos
Actinas , Proteínas de Drosophila , Drosophila melanogaster , Microtúbulos , Morfogênese , Espectrina , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Espectrina/metabolismo , Espectrina/genética , Microtúbulos/metabolismo , Actinas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Filaminas/metabolismo , Filaminas/genética , Glândulas Salivares/metabolismo , Glândulas Salivares/embriologia , Glândulas Salivares/citologia , Forma Celular , Polaridade Celular , Actomiosina/metabolismo , Proteínas Associadas aos Microtúbulos
2.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997696

RESUMO

Toll-like receptors (TLRs) in mammalian systems are well known for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorsoventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of junctional cytoskeletal activity. Here, we address the function of TLRs and the downstream key signal transduction component IRAK4 in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling, as revealed by p-IRAK4, and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight and adherens junctions, such as a loss of epithelial tension and changes in junctional actomyosin. Changes upon IRAK-4 inhibition are conserved in human bronchial epithelial cells. Knockdown of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Receptores Toll-Like , Humanos , Células CACO-2 , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Transdução de Sinais
3.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897564

RESUMO

During morphogenesis, large-scale changes of tissue primordia are coordinated across an embryo. In Drosophila, several tissue primordia and embryonic regions are bordered or encircled by supracellular actomyosin cables, junctional actomyosin enrichments networked between many neighbouring cells. We show that the single Drosophila Alp/Enigma-family protein Zasp52, which is most prominently found in Z-discs of muscles, is a component of many supracellular actomyosin structures during embryogenesis, including the ventral midline and the boundary of the salivary gland placode. We reveal that Zasp52 contains within its central coiled-coil region a type of actin-binding motif usually found in CapZbeta proteins, and this domain displays actin-binding activity. Using endogenously-tagged lines, we identify that Zasp52 interacts with junctional components, including APC2, Polychaetoid and Sidekick, and actomyosin regulators. Analysis of zasp52 mutant embryos reveals that the severity of the embryonic defects observed scales inversely with the amount of functional protein left. Large tissue deformations occur where actomyosin cables are found during embryogenesis, and in vivo and in silico analyses suggest a model whereby supracellular Zasp52-containing cables aid to insulate morphogenetic changes from one another.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Actomiosina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Sarcômeros/metabolismo , Morfogênese/genética
4.
Nat Rev Mol Cell Biol ; 14(5): 307-14, 2013 05.
Artigo em Inglês | MEDLINE | ID: mdl-23609509

RESUMO

Cell polarity and cell-cell junctions have pivotal roles in organizing cells into tissues and in mediating cell-cell communication. The transmembrane protein Crumbs has a well-established role in the maintenance of epithelial polarity, and it can also regulate signalling via the Notch and Hippo pathways to influence tissue growth. The functions of Crumbs in epithelial polarity and Hippo-mediated growth depend on its short intracellular domain. Recent evidence now points to a conserved and fundamental role for the extracellular domain of Crumbs in mediating homophilic Crumbs-Crumbs interactions at cell-cell junctions.


Assuntos
Polaridade Celular/fisiologia , Junções Intercelulares/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Comunicação Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Humanos , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
J Cell Sci ; 130(4): 712-724, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062848

RESUMO

Dorsal closure of the Drosophila embryonic epithelium provides an excellent model system for the in vivo analysis of molecular mechanisms regulating cytoskeletal rearrangements. In this study, we investigated the function of the Drosophila spectraplakin Short stop (Shot), a conserved cytoskeletal structural protein, during closure of the dorsal embryonic epithelium. We show that Shot is essential for the efficient final zippering of the opposing epithelial margins. By using isoform-specific mutant alleles and genetic rescue experiments with truncated Shot variants, we demonstrate that Shot functions as an actin-microtubule cross-linker in mediating zippering. At the leading edge of epithelial cells, Shot regulates protrusion dynamics by promoting filopodia formation. Fluorescence recovery after photobleaching (FRAP) analysis and in vivo imaging of microtubule growth revealed that Shot stabilizes dynamic microtubules. The actin- and microtubule-binding activities of Shot are simultaneously required in the same molecule, indicating that Shot is engaged as a physical crosslinker in this process. We propose that Shot-mediated interactions between microtubules and actin filaments facilitate filopodia formation, which promotes zippering by initiating contact between opposing epithelial cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Morfogênese , Actinas/metabolismo , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Células Epiteliais/citologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas dos Microfilamentos/química , Mutação/genética , Domínios Proteicos , Pseudópodes/metabolismo
6.
J Cell Sci ; 129(1): 121-34, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26585311

RESUMO

Coordination between different cytoskeletal systems is crucial for many cell biological functions, including cell migration and mitosis, and also plays an important role during tissue morphogenesis. Proteins of the class of cytoskeletal crosslinkers, or cytolinkers, have the ability to interact with more than one cytoskeletal system at a time and are prime candidates to mediate any coordination. One such class comprises the Gas2-like proteins, combining a conserved calponin-homology-type actin-binding domain and a Gas2 domain predicted to bind microtubules (MTs). This domain combination is also found in spectraplakins, huge cytolinkers that play important roles in many tissues in both invertebrates and vertebrates. Here, we dissect the ability of the single Drosophila Gas2-like protein Pigs to interact with both actin and MT cytoskeletons, both in vitro and in vivo, and illustrate complex regulatory interactions that determine the localisation of Pigs to and its effects on the cytoskeleton.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína
7.
Semin Cell Dev Biol ; 31: 74-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24685610

RESUMO

Any type of tubulogenesis is a process that is highly coordinated between large numbers of cells. Like other morphogenetic processes, it is driven to a great extent by complex cell shape changes and cell rearrangements. The formation of the salivary glands in the fly embryo provides an ideal model system to study these changes and rearrangements, because upon specification of the cells that are destined to form the tube, there is no further cell division or cell death. Thus, morphogenesis of the salivary gland tubes is entirely driven by cell shape changes and rearrangements. In this review, we will discuss and distill from the literature what is known about the control of cell shape during the early invagination process and whilst the tubes extend in the fly embryo at later stages.


Assuntos
Forma Celular , Glândulas Salivares/citologia , Glândulas Salivares/embriologia , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Morfogênese
8.
Dev Cell ; 59(5): 595-612.e8, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38340720

RESUMO

During kidney development, nephron epithelia arise de novo from fate-committed mesenchymal progenitors through a mesenchymal-to-epithelial transition (MET). Downstream of fate specification, transcriptional mechanisms that drive establishment of epithelial morphology are poorly understood. We used human iPSC-derived renal organoids, which recapitulate nephrogenesis, to investigate mechanisms controlling renal MET. Multi-ome profiling via snRNA-seq and ATAC-seq of organoids identified dynamic changes in gene expression and chromatin accessibility driven by activators and repressors throughout MET. CRISPR interference identified that paired box 8 (PAX8) is essential for initiation of MET in human renal organoids, contrary to in vivo mouse studies, likely by activating a cell-adhesion program. While Wnt/ß-catenin signaling specifies nephron fate, we find that it must be attenuated to allow hepatocyte nuclear factor 1-beta (HNF1B) and TEA-domain (TEAD) transcription factors to drive completion of MET. These results identify the interplay between fate commitment and morphogenesis in the developing human kidney, with implications for understanding both developmental kidney diseases and aberrant epithelial plasticity following adult renal tubular injury.


Assuntos
Rim , Néfrons , Humanos , Camundongos , Animais , Rim/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Transdução de Sinais , Transição Epitelial-Mesenquimal
9.
Development ; 137(6): 913-22, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20150280

RESUMO

Gas2-like proteins harbour putative binding sites for both the actin and the microtubule cytoskeleton and could thus mediate crosstalk between these cytoskeletal systems. Family members are highly conserved in all metazoans but their in vivo role is not clear. The sole Drosophila Gas2-like gene, CG3973 (pigs), was recently identified as a transcriptional target of Notch signalling and might therefore link cell fate decisions through Notch activation directly to morphogenetic changes. We have generated a null mutant in CG3973 (pigs): pigs(1) mutants are semi-viable but adult flies are flightless, showing indirect flight muscle degeneration, and females are sterile, showing disrupted oogenesis and severe defects in follicle cell differentiation, similar to phenotypes seen when levels of Notch/Delta signalling are perturbed in these tissues. Loss of Pigs leads to an increase in Notch signalling activity in several tissues. These results indicate that Gas2-like proteins are essential for development and suggest that Pigs acts downstream of Notch as a morphogenetic read-out, and also as part of a regulatory feedback loop to relay back information about the morphogenetic state of cells to restrict Notch activation to appropriate levels in certain target tissues.


Assuntos
Aciltransferases/genética , Aciltransferases/fisiologia , Proteínas de Drosophila/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Receptores Notch/genética , Aciltransferases/metabolismo , Animais , Diferenciação Celular/genética , Forma Celular/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica , Crescimento e Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Modelos Biológicos , Morfogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Plaquinas/genética , Plaquinas/metabolismo , Plaquinas/fisiologia , Receptores Notch/metabolismo , Receptores Notch/fisiologia , Homologia de Sequência , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Methods Mol Biol ; 2179: 43-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939713

RESUMO

The evolutionary emergence of the mesenchymal phenotype greatly increased the complexity of tissue architecture and composition in early Metazoan species. At the molecular level, an epithelial-to-mesenchymal transition (EMT) was permitted by the innovation of specific transcription factors whose expression is sufficient to repress the epithelial transcriptional program. The reverse process, mesenchymal-to-epithelial transition (MET), involves direct inhibition of EMT transcription factors by numerous mechanisms including tissue-specific MET-inducing transcription factors (MET-TFs), micro-RNAs, and changes to cell and tissue architecture, thus providing an elegant solution to the need for tight temporal and spatial control over EMT and MET events during development and adult tissue homeostasis.


Assuntos
Desenvolvimento Embrionário/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias/genética , Animais , Homeostase/genética , Humanos , Fenótipo , Fatores de Transcrição/genética
11.
Nat Commun ; 12(1): 4096, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215746

RESUMO

Non-centrosomal microtubule arrays serve crucial functions in cells, yet the mechanisms of their generation are poorly understood. During budding of the epithelial tubes of the salivary glands in the Drosophila embryo, we previously demonstrated that the activity of pulsatile apical-medial actomyosin depends on a longitudinal non-centrosomal microtubule array. Here we uncover that the exit from the last embryonic division cycle of the epidermal cells of the salivary gland placode leads to one centrosome in the cells losing all microtubule-nucleation capacity. This restriction of nucleation activity to the second, Centrobin-enriched, centrosome is key for proper morphogenesis. Furthermore, the microtubule-severing protein Katanin and the minus-end-binding protein Patronin accumulate in an apical-medial position only in placodal cells. Loss of either in the placode prevents formation of the longitudinal microtubule array and leads to loss of apical-medial actomyosin and impaired apical constriction. We thus propose a mechanism whereby Katanin-severing at the single active centrosome releases microtubule minus-ends that are then anchored by apical-medial Patronin to promote formation of the longitudinal microtubule array crucial for apical constriction and tube formation.


Assuntos
Divisão Celular/fisiologia , Centrossomo/metabolismo , Microtúbulos/metabolismo , Actinas , Actomiosina/metabolismo , Animais , Centrossomo/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Drosophila , Katanina , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Morfogênese , Glândulas Salivares , Tubulina (Proteína)/metabolismo
12.
Elife ; 102021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723792

RESUMO

During organ development, tubular organs often form from flat epithelial primordia. In the placodes of the forming tubes of the salivary glands in the Drosophila embryo, we previously identified spatially defined cell behaviors of cell wedging, tilting, and cell intercalation that are key to the initial stages of tube formation. Here, we address what the requirements are that ensure the continuous formation of a narrow symmetrical tube from an initially asymmetrical primordium whilst overall tissue geometry is constantly changing. We are using live-imaging and quantitative methods to compare wild-type placodes and mutants that either show disrupted cell behaviors or an initial symmetrical placode organization, with both resulting in severe impairment of the invagination. We find that early transcriptional patterning of key morphogenetic transcription factors drives the selective activation of downstream morphogenetic modules, such as GPCR signaling that activates apical-medial actomyosin activity to drive cell wedging at the future asymmetrically placed invagination point. Over time, transcription of key factors expands across the rest of the placode and cells switch their behavior from predominantly intercalating to predominantly apically constricting as their position approaches the invagination pit. Misplacement or enlargement of the initial invagination pit leads to early problems in cell behaviors that eventually result in a defective organ shape. Our work illustrates that the dynamic patterning of the expression of transcription factors and downstream morphogenetic effectors ensures positionally fixed areas of cell behavior with regards to the invagination point. This patterning in combination with the asymmetric geometrical setup ensures functional organ formation.


Assuntos
Drosophila/embriologia , Embrião não Mamífero/metabolismo , Morfogênese , Animais , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Glândulas Salivares/citologia , Glândulas Salivares/embriologia
13.
Genetics ; 181(2): 543-65, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19064711

RESUMO

During development individual cells in tissues undergo complex cell-shape changes to drive the morphogenetic movements required to form tissues. Cell shape is determined by the cytoskeleton and cell-shape changes critically depend on a tight spatial and temporal control of cytoskeletal behavior. We have used the formation of the salivary glands in the Drosophila embryo, a process of tubulogenesis, as an assay for identifying factors that impinge on cell shape and the cytoskeleton. To this end we have performed a gain-of-function screen in the salivary glands, using a collection of fly lines carrying EP-element insertions that allow the overexpression of downstream-located genes using the UAS-Gal4 system. We used a salivary-gland-specific fork head-Gal4 line to restrict expression to the salivary glands, in combination with reporters of cell shape and the cytoskeleton. We identified a number of genes known to affect salivary gland formation, confirming the effectiveness of the screen. In addition, we found many genes not implicated previously in this process, some having known functions in other tissues. We report the initial characterization of a subset of genes, including chickadee, rhomboid1, egalitarian, bitesize, and capricious, through comparison of gain- and loss-of-function phenotypes.


Assuntos
Drosophila/embriologia , Drosophila/genética , Glândulas Salivares/embriologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Forma Celular/genética , Citoesqueleto/genética , Primers do DNA/genética , Proteínas de Drosophila/genética , Feminino , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Masculino , Mutação , Proteínas Nucleares/genética , Fenótipo , Fatores de Transcrição/genética
14.
Philos Trans R Soc Lond B Biol Sci ; 375(1809): 20190557, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32829681

RESUMO

Cell shape changes are key to observable changes at the tissue level during morphogenesis and organ formation. The major driver of cell shape changes in turn is the actin cytoskeleton, both in the form of protrusive linear or branched dynamic networks and in the form of contractile actomyosin. Over the last 20 years, actomyosin has emerged as the major cytoskeletal system that deforms cells in epithelial sheets during morphogenesis. By contrast, the second major cytoskeletal system, microtubules, have so far mostly been assumed to serve 'house-keeping' functions, such as directed transport or cell division, during morphogenetic events. Here, I will reflect on a subset of studies over the last 10 years that have clearly shown a major direct role for the microtubule cytoskeleton in epithelial morphogenesis, suggesting that our focus will need to be widened to give more attention and credit to this cytoskeletal system in playing an active morphogenetic role. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.


Assuntos
Citoesqueleto/metabolismo , Embrião não Mamífero/embriologia , Epitélio/embriologia , Microtúbulos/metabolismo , Morfogênese , Animais , Caenorhabditis elegans/embriologia , Drosophila/embriologia
15.
Curr Opin Genet Dev ; 63: 1-8, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32092616

RESUMO

Morphogenesis is an essential process by which a given tissue, organ or organism acquires its final shape. A select number of mechanisms are used in order to drive epithelial morphogenesis, including cell shape changes as well as cell death or cell division. A cell's shape results from the combination of intrinsic properties of the actomyosin and microtubule (MTs) cytoskeletons, and extrinsic properties due to physical interactions with the neighbouring environment. While we now have a good understanding of the genetic pathways and some of the signalling pathways controlling cell shape changes, the mechanical properties of cells and their role in morphogenesis remain largely unexplored. Recent improvements in microscopy techniques and the development of modelling and quantitative methods have enabled a better understanding of the bio-mechanical events controlling cell shape during morphogenesis. This review aims to highlight recent findings elegantly unravelling and quantifying the contribution of mechanical forces during morphogenesis.


Assuntos
Citoesqueleto de Actina , Forma Celular , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Morfogênese , Animais , Humanos
16.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33057636

RESUMO

In the Drosophila larval optic lobe, the generation of neural stem cells involves an epithelial-to-mesenchymal-like transition of a continuous stripe of cells that sweeps across the neuroepithelium, but the dynamics at cell and tissue level were unknown until now. In this issue, Shard et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202005035) identify that Neuralized controls a partial epithelial-to-mesenchymal transition through regulation of the apical Crumbs complex and through the coordination of cell behaviors such as apical constriction and cell alignment.


Assuntos
Ondas Encefálicas , Proteínas de Drosophila , Células-Tronco Neurais , Animais , Drosophila , Proteínas de Drosophila/genética , Epitélio
17.
Dev Cell ; 52(3): 364-378.e7, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31902655

RESUMO

The myosin II activator Rho-kinase (Rok) is planar polarized at the tissue boundary of the Drosophila embryonic salivary gland placode through a negative regulation by the apical polarity protein Crumbs that is anisotropically localized at the boundary. However, in inner cells of the placode, both Crumbs and Rok are isotropically enriched at junctions. We propose that modulation of Rok membrane residence time by Crumbs' downstream effectors can reconcile both behaviors. Using FRAP combined with in silico simulations, we find that the lower membrane dissociation rate (koff) of Rok at the tissue boundary with low Crumbs explains this boundary-specific effect. The S/T kinase Pak1, recruited by Crumbs and Cdc42, negatively affects Rok membrane association in vivo and in vitro can phosphorylate Rok near the pleckstrin homology (PH) domain that mediates membrane association. These data reveal an important mechanism of the modulation of Rok membrane residence time via affecting the koff that may be widely employed during tissue morphogenesis.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Proteínas de Ligação ao GTP/genética , Masculino , Proteínas de Membrana/genética , Fosforilação , Quinases Ativadas por p21/genética , Quinases Associadas a rho/genética
18.
J Cell Biol ; 162(7): 1305-15, 2003 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-14517208

RESUMO

The Short stop (Shot/Kakapo) spectraplakin is a giant cytoskeletal protein, which exists in multiple isoforms with characteristics of both spectrin and plakin superfamilies. Previously characterized Shot isoforms are similar to spectrin and dystrophin, with an actin-binding domain followed by spectrin repeats. We describe a new large exon within the shot locus, which encodes a series of plakin repeats similar to the COOH terminus of plakins such as plectin and BPAG1e. We find that the plakin repeats are inserted between the actin-binding domain and spectrin repeats, generating isoforms as large as 8,846 residues, which could span 400 nm. These novel isoforms localized to adherens junctions of embryonic and follicular epithelia. Loss of Shot within the follicle epithelium leads to double layering and accumulation of actin and ZO-1 in between, and a reduction of Armadillo and Discs lost within, mutant cells, indicative of a disruption of adherens junction integrity. Thus, we identify a new role for spectraplakins in mediating cell-cell adhesion.


Assuntos
Junções Aderentes/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliais/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Adesão Celular/fisiologia , Proteínas de Drosophila/química , Drosophila melanogaster , Células Epiteliais/ultraestrutura , Éxons , Isomerismo , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , RNA Mensageiro/análise , Sequências Repetitivas de Ácido Nucleico , Espectrina/genética
19.
Dev Cell ; 47(5): 537-538, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513296

RESUMO

Recent improvements in live-imaging and quantitative morphometric approaches have illustrated how the topology of a tissue primordium plays a key role in the type and coordination of morphogenetic behaviors taking place.


Assuntos
Desenvolvimento Embrionário , Folículo Piloso , Animais , Diferenciação Celular , Morfogênese
20.
Curr Opin Cell Biol ; 55: 104-110, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30029038

RESUMO

One of the most fascinating aspects of development is the complexity and diversity of tissues and organs that are formed from simple primordia, involving complex coordination between large groups of cells. Lack of coordination leads to developmental defects and failure in organ formation. The simple primordia are often polarised epithelial sheets, with cells connected to neighbours apically via Cadherin-based cell-cell junctions that intracellularly link to the cytoskeleton. Coordination of cells in epithelia during morphogenesis occurs in part at these junctions. Furthermore, in many tissues a striking supracellular order and alignment of cytoskeletal structures can be observed, likely playing an important part in the coordination of cells. Here, we will introduce examples of morphogenetic events where this supracellular order of the cytoskeleton is very apparent and will discuss recent advances in understanding the generation and function of this order.


Assuntos
Citoesqueleto/metabolismo , Especificidade de Órgãos , Organogênese , Actomiosina/metabolismo , Animais , Epitélio/metabolismo , Humanos , Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA