Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(9-10): 3539-3554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35511277

RESUMO

As an alternative to chemical building blocks derived from algal biomass, the excretion of glycolate has been proposed. This process has been observed in green algae such as Chlamydomonas reinhardtii as a product of the photorespiratory pathway. Photorespiration generally occurs at low CO2 and high O2 concentrations, through the key enzyme RubisCO initiating the pathway via oxygenation of 1.5-ribulose-bisphosphate. In wild-type strains, photorespiration is usually suppressed in favour of carboxylation due to the cellular carbon concentrating mechanisms (CCMs) controlling the internal CO2 concentration. Additionally, newly produced glycolate is directly metabolized in the C2 cycle. Therefore, both the CCMs and the C2 cycle are the key elements which limit the glycolate production in wild-type cells. Using conventional crossing techniques, we have developed Chlamydomonas reinhardtii double mutants deficient in these two key pathways to direct carbon flux to glycolate excretion. Under aeration with ambient air, the double mutant D6 showed a significant and stable glycolate production when compared to the non-producing wild type. Interestingly, this mutant can act as a carbon sink by fixing atmospheric CO2 into glycolate without requiring any additional CO2 supply. Thus, the double-mutant strain D6 can be used as a photocatalyst to produce chemical building blocks and as a future platform for algal-based biotechnology. KEY POINTS: • Chlamydomonas reinhardtii cia5 gyd double mutants were developed by sexual crossing • The double mutation eliminates the need for an inhibitor in glycolate production • The strain D6 produces significant amounts of glycolate with ambient air only.


Assuntos
Chlamydomonas reinhardtii , Biotecnologia , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Glicolatos/metabolismo , Fotossíntese , Plantas/metabolismo
2.
ChemistryOpen ; 11(7): e202200050, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35822926

RESUMO

Ethylene glycol (EG) is obtained by a novel, two-step approach combining a biotechnological and a heterogeneously catalyzed step. First, microalgae are cultivated to photobiocatalytically yield glycolic acid (GA) by means of photosynthesis from CO2 and water. GA is continuously excreted into the surrounding medium. In the second step, the GA-containing algal medium is used as feedstock for catalytic reduction with H2 to EG over a Ru/C catalyst. The present study focuses on the conversion of an authentic algae-derived GA solution. After identification of the key characteristics of the algal medium (compared to pure aqueous GA), the influence of pH, numerous salt additives, pH buffers and other relevant organic molecules on the catalytic GA reduction was investigated. Nitrogen- and sulfur-containing organic molecules can strongly inhibit the reaction. Moreover, pH adjustment by acidification is required, for which H2 SO4 is found most suitable. In combination with a modification of the biotechnological process to mitigate the use of inhibitory compounds, and after acidifying the algal medium, over Ru/C a EG yield of up to 21 % even at non-optimized reaction conditions was achieved.


Assuntos
Microalgas , Catálise , Etilenoglicol/química , Glicolatos , Concentração de Íons de Hidrogênio , Hidrogenação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA