Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pathog Dis ; 77(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821815

RESUMO

Phage therapy has shown promising results in the treatment of Pseudomonas aeruginosa biofilm infections in animal studies and case reports. The aim of this study was to quantify effects of phage treatments on P. aeruginosa biofilm production and structure. Confocal scanning microscopy was used to follow the interaction between a cocktail of three virulent phages and P. aeruginosa flow-cell biofilms. The role of (i) biofilm age, (ii) repeated phage treatments, (iii) alginate production and (iv) the combination with sub-MIC levels of ciprofloxacin was investigated. Single phage treatment in the early biofilm stages significantly reduced P. aeruginosa PAO1 biovolume (85%-98% reduction). Repeated phage treatments increased the biovolume from 18.25 (untreated biofilm) to 22.24 and 31.07 µm3/µm2 for biofilms treated with phages twice and thrice, respectively. Alginate protected against the phage treatment as the live biovolume remained unaffected by the phage treatment in the mucoid biofilm (20.11 µm3/µm2 in untreated and 21.74 µm3/µm2 in phage-treated biofilm) but decreased in the PAO1 biofilm from 27.35 to 0.89 µm3/µm2. We show that the combination of phages with antibiotics at sub-MIC levels caused a ∼6 log units reduction in the abundance of P. aeruginosa cells in biofilms and that phage treatment increased the size of microcolonies in flow-cell system.


Assuntos
Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Alginatos/farmacologia , Terapia Combinada , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Fagos de Pseudomonas/efeitos dos fármacos , Replicação Viral
2.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624625

RESUMO

Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species. Although phage therapy has been proposed as an alternative treatment, the defense mechanisms against phage infection in V. anguillarum and their impact on host function are not fully understood. Here, we examined phage defense strategies in four V. anguillarum strains during exposure to the broad-host-range bacteriophage KVP40. Whole-genome sequences of phage-resistant V. anguillarum isolates showed mutations causing premature stop codons, frameshifts and amino acid changes in the OmpK phage receptor. Moreover, certain phage-resistant variants recovered susceptibility to phage infection following re-culturing, suggesting alternative protection mechanisms, such as formation of biofilm, receptor downregulation and phage inactivation by proteases. Also, the lack of phage production by some strains despite strong phage control suggested an abortive infection mechanism was in play. In addition, examination of the virulence properties and extracellular enzyme secretion of the phage-resistant variants suggested that phage resistance was associated with reduced virulence in V. anguillarum. Altogether, the results identified a variety of phage resistance mechanisms in V. anguillarum including both mutational and non-mutational defenses and demonstrated a significant fitness loss associated with mutational changes, which may explain the selection for alternative defense mechanisms.


Assuntos
Bacteriófagos/fisiologia , Doenças dos Peixes/microbiologia , Vibrioses/veterinária , Vibrio/patogenicidade , Vibrio/virologia , Animais , Proteínas de Bactérias/genética , Peixes/microbiologia , Genoma Bacteriano/genética , Mutação , Vibrio/genética , Vibrioses/microbiologia , Virulência/genética
3.
Sci Rep ; 8(1): 9973, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967440

RESUMO

Prophages are known to encode important virulence factors in the human pathogen Vibrio cholerae. However, little is known about the occurrence and composition of prophage-encoded traits in environmental vibrios. A database of 5,674 prophage-like elements constructed from 1,874 Vibrio genome sequences, covering sixty-four species, revealed that prophage-like elements encoding possible properties such as virulence and antibiotic resistance are widely distributed among environmental vibrios, including strains classified as non-pathogenic. Moreover, we found that 45% of Vibrio species harbored a complete prophage-like element belonging to the Inoviridae family, which encode the zonula occludens toxin (Zot) previously described in the V. cholerae. Interestingly, these zot-encoding prophages were found in a variety of Vibrio strains covering both clinical and marine isolates, including strains from deep sea hydrothermal vents and deep subseafloor sediments. In addition, the observation that a spacer from the CRISPR locus in the marine fish pathogen V. anguillarum strain PF7 had 95% sequence identity with a zot gene from the Inoviridae prophage found in V. anguillarum strain PF4, suggests acquired resistance to inoviruses in this species. Altogether, our results contribute to the understanding of the role of prophages as drivers of evolution and virulence in the marine Vibrio bacteria.


Assuntos
Prófagos/genética , Vibrio/fisiologia , Vibrio/patogenicidade , Fatores de Virulência/genética , Organismos Aquáticos , Toxinas Bacterianas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Bacteriano , Oligopeptídeos/genética , Filogenia , Filogeografia , Vibrio/virologia
4.
Antibiotics (Basel) ; 7(2)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772736

RESUMO

The aquaculture industry is suffering from losses associated with bacterial infections by opportunistic pathogens. Vibrio anguillarum is one of the most important pathogens, causing vibriosis in fish and shellfish cultures leading to high mortalities and economic losses. Bacterial resistance to antibiotics and inefficient vaccination at the larval stage of fish emphasizes the need for novel approaches, and phage therapy for controlling Vibrio pathogens has gained interest in the past few years. In this study, we examined the potential of the broad-host-range phage KVP40 to control four different V. anguillarum strains in Atlantic cod (Gadus morhua L.) and turbot (Scophthalmus maximus L.) larvae. We examined larval mortality and abundance of bacteria and phages. Phage KVP40 was able to reduce and/or delay the mortality of the cod and turbot larvae challenged with V. anguillarum. However, growth of other pathogenic bacteria naturally occurring on the fish eggs prior to our experiment caused mortality of the larvae in the unchallenged control groups. Interestingly, the broad-spectrum phage KVP40 was able to reduce mortality in these groups, compared to the nonchallenge control groups not treated with phage KVP40, demonstrating that the phage could also reduce mortality imposed by the background population of pathogens. Overall, phage-mediated reduction in mortality of cod and turbot larvae in experimental challenge assays with V. anguillarum pathogens suggested that application of broad-host-range phages can reduce Vibrio-induced mortality in turbot and cod larvae, emphasizing that phage therapy is a promising alternative to traditional treatment of vibriosis in marine aquaculture.

5.
Viruses ; 9(5)2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531104

RESUMO

Nineteen Vibrio anguillarum-specific temperate bacteriophages isolated across Europe and Chile from aquaculture and environmental sites were genome sequenced and analyzed for host range, morphology and life cycle characteristics. The phages were classified as Siphoviridae with genome sizes between 46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs), genetic diversifications were located in three variable regions (VR1, VR2 and VR3) in six of the phage genomes. Identification of specific genes, such as N6-adenine methyltransferase and lambda like repressor, as well as the presence of a tRNAArg, suggested a both mutualistic and parasitic interaction between phages and hosts. During short term phage exposure experiments, 28% of a V. anguillarum host population was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which selects for co-existence rather than arms race dynamics.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Peixes/microbiologia , Siphoviridae/genética , Vibrio/virologia , Animais , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Sequência de Bases , Biodiversidade , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Viral/análise , Genes Virais/genética , Variação Genética/genética , Genoma Viral , Geografia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Lisogenia/fisiologia , Microscopia Eletrônica de Transmissão , Filogenia , Polimorfismo de Nucleotídeo Único , Prófagos/genética , Prófagos/isolamento & purificação , Água do Mar/virologia , Alinhamento de Sequência , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Vibrio/fisiologia , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA