Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(11): 1888-1904, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36725323

RESUMO

Smooth eye movements are common during natural viewing; we frequently rotate our eyes to track moving objects or to maintain fixation on an object during self-movement. Reliable information about smooth eye movements is crucial to various neural computations, such as estimating heading from optic flow or judging depth from motion parallax. While it is well established that extraretinal signals (e.g., efference copies of motor commands) carry critical information about eye velocity, the rotational optic flow field produced by eye rotations also carries valuable information. Although previous work has shown that dynamic perspective cues in optic flow can be used in computations that require estimates of eye velocity, it has remained unclear where and how the brain processes these visual cues and how they are integrated with extraretinal signals regarding eye rotation. We examined how neurons in the dorsal region of the medial superior temporal area (MSTd) of two male rhesus monkeys represent the direction of smooth pursuit eye movements based on both visual cues (dynamic perspective) and extraretinal signals. We find that most MSTd neurons have matched preferences for the direction of eye rotation based on visual and extraretinal signals. Moreover, neural responses to combinations of these signals are well predicted by a weighted linear summation model. These findings demonstrate a neural substrate for representing the velocity of smooth eye movements based on rotational optic flow and establish area MSTd as a key node for integrating visual and extraretinal signals into a more generalized representation of smooth eye movements.SIGNIFICANCE STATEMENT We frequently rotate our eyes to smoothly track objects of interest during self-motion. Information about eye velocity is crucial for a variety of computations performed by the brain, including depth perception and heading perception. Traditionally, information about eye rotation has been thought to arise mainly from extraretinal signals, such as efference copies of motor commands. Previous work shows that eye velocity can also be inferred from rotational optic flow that accompanies smooth eye movements, but the neural origins of these visual signals about eye rotation have remained unknown. We demonstrate that macaque neurons signal the direction of smooth eye rotation based on visual signals, and that they integrate both visual and extraretinal signals regarding eye rotation in a congruent fashion.


Assuntos
Percepção de Movimento , Fluxo Óptico , Animais , Masculino , Movimentos Oculares , Sinais (Psicologia) , Acompanhamento Ocular Uniforme , Neurônios/fisiologia , Macaca mulatta , Percepção de Movimento/fisiologia , Estimulação Luminosa
2.
iScience ; 25(10): 105104, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185371

RESUMO

A habitual gaze is critical to efficiently identify and exploit valuable objects. However, it is unclear what salience components drive the habitual gaze choice. Here, we trained subjects to assign positive, neutral, and negative values to objects and found that motivational salience guided habitual gaze choices over 30 days of memory retention. The habitual preference for negatively valued objects emerged during memory retention. This habitual choice was not explained by a general model with salience components driven by physical features of objects and the rank of learned values. Instead, this is better explained by a model that contains an additional component driven by motivational salience. In a simulated value-forgotten condition, these motivational salience-based habitual choices facilitated re-learning. Our data indicate that after long-term retention, habitual gaze results from increased motivational salience, potentially facilitating the re-learning of forgotten values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA