Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 110, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475691

RESUMO

BACKGROUND: The analysis of large and complex biological datasets in bioinformatics poses a significant challenge to achieving reproducible research outcomes due to inconsistencies and the lack of standardization in the analysis process. These issues can lead to discrepancies in results, undermining the credibility and impact of bioinformatics research and creating mistrust in the scientific process. To address these challenges, open science practices such as sharing data, code, and methods have been encouraged. RESULTS: CREDO, a Customizable, REproducible, DOcker file generator for bioinformatics applications, has been developed as a tool to moderate reproducibility issues by building and distributing docker containers with embedded bioinformatics tools. CREDO simplifies the process of generating Docker images, facilitating reproducibility and efficient research in bioinformatics. The crucial step in generating a Docker image is creating the Dockerfile, which requires incorporating heterogeneous packages and environments such as Bioconductor and Conda. CREDO stores all required package information and dependencies in a Github-compatible format to enhance Docker image reproducibility, allowing easy image creation from scratch. The user-friendly GUI and CREDO's ability to generate modular Docker images make it an ideal tool for life scientists to efficiently create Docker images. Overall, CREDO is a valuable tool for addressing reproducibility issues in bioinformatics research and promoting open science practices.


Assuntos
Biologia Computacional , Software , Reprodutibilidade dos Testes , Biologia Computacional/métodos
2.
Gigascience ; 8(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494672

RESUMO

BACKGROUND: Single-cell RNA sequencing is essential for investigating cellular heterogeneity and highlighting cell subpopulation-specific signatures. Single-cell sequencing applications have spread from conventional RNA sequencing to epigenomics, e.g., ATAC-seq. Many related algorithms and tools have been developed, but few computational workflows provide analysis flexibility while also achieving functional (i.e., information about the data and the tools used are saved as metadata) and computational reproducibility (i.e., a real image of the computational environment used to generate the data is stored) through a user-friendly environment. FINDINGS: rCASC is a modular workflow providing an integrated analysis environment (from count generation to cell subpopulation identification) exploiting Docker containerization to achieve both functional and computational reproducibility in data analysis. Hence, rCASC provides preprocessing tools to remove low-quality cells and/or specific bias, e.g., cell cycle. Subpopulation discovery can instead be achieved using different clustering techniques based on different distance metrics. Cluster quality is then estimated through the new metric "cell stability score" (CSS), which describes the stability of a cell in a cluster as a consequence of a perturbation induced by removing a random set of cells from the cell population. CSS provides better cluster robustness information than the silhouette metric. Moreover, rCASC's tools can identify cluster-specific gene signatures. CONCLUSIONS: rCASC is a modular workflow with new features that could help researchers define cell subpopulations and detect subpopulation-specific markers. It uses Docker for ease of installation and to achieve a computation-reproducible analysis. A Java GUI is provided to welcome users without computational skills in R.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Fluxo de Trabalho , Análise por Conglomerados , Humanos , Leucócitos Mononucleares/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA