Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 21(23): 5845-63, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23094833

RESUMO

We investigated here the demographical history of Tabebuia impetiginosa (Bignoniaceae) to understand the dynamics of the disjunct geographical distribution of South American seasonally dry forests (SDFs), based on coupling an ensemble approach encompassing hindcasting species distribution modelling and statistical phylogeographical analysis. We sampled 17 populations (280 individuals) in central Brazil and analysed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH, and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. Phylogenetic analyses based on median-joining network showed no haplotype sharing among population but strong evidence of incomplete lineage sorting. Coalescent analyses showed historical constant populations size, negligible gene flow among populations, and an ancient time to most recent common ancestor dated from ~4.7 ± 1.1 Myr BP. Most divergences dated from the Lower Pleistocene, and no signal of important population size reduction was found in coalescent tree and tests of demographical expansion. Demographical scenarios were built based on past geographical range dynamic models, using two a priori biogeographical hypotheses ('Pleistocene Arc' and 'Amazonian SDF expansion') and on two additional hypotheses suggested by the palaeodistribution modelling built with several algorithms for distribution modelling and palaeoclimatic data. The simulation of these demographical scenarios showed that the pattern of diversity found so far for T. impetiginosa is in consonance with a palaeodistribution expansion during the last glacial maximum (LGM, 21 kyr BP), strongly suggesting that the current disjunct distribution of T. impetiginosa in SDFs may represent a climatic relict of a once more wide distribution.


Assuntos
Bignoniaceae/genética , Variação Genética , Árvores/genética , Brasil , DNA de Cloroplastos , DNA Intergênico , Fluxo Gênico , Genética Populacional , Modelos Teóricos , Dados de Sequência Molecular , Filogenia , Filogeografia , Estações do Ano
2.
Front Plant Sci ; 6: 653, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379681

RESUMO

Understanding the dispersal routes of Neotropical savanna tree species is an essential step to unravel the effects of past climate change on genetic patterns, species distribution and population demography. Here we reconstruct the demographic history and dispersal dynamics of the Neotropical savanna tree species Tabebuia aurea to understand the effects of Quaternary climate change on its current spatial patterns of genetic diversity. We sampled 285 individuals from 21 populations throughout Brazilian savannas and sequenced all individuals for three chloroplast intergenic spacers and ITS nrDNA. We analyzed data using a multi-model inference framework by coupling the relaxed random walk model (RRW), ecological niche modeling (ENM) and statistical phylogeography. The most recent common ancestor of T. aurea lineages dated from ~4.0 ± 2.5 Ma. T. aurea lineages cyclically dispersed from the West toward the Central-West Brazil, and from the Southeast toward the East and Northeast Brazil, following the paleodistribution dynamics shown by the ENMs through the last glacial cycle. A historical refugium through time may have allowed dispersal of lineages among populations of Central Brazil, overlapping with population expansion during interglacial periods and the diversification of new lineages. Range and population expansion through the Quaternary were, respectively, the most frequent prediction from ENMs and the most likely demographic scenario from coalescent simulations. Consistent phylogeographic patterns among multiple modeling inferences indicate a promising approach, allowing us to understand how cyclical climate changes through the Quaternary drove complex population dynamics and the current patterns of species distribution and genetic diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA