Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 192(8): 3507-17, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639353

RESUMO

Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class II-restricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular , Análise por Conglomerados , Células Dendríticas/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Expressão Gênica , Perfilação da Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Antígenos H-2/química , Antígenos H-2/imunologia , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
2.
Mol Syndromol ; 15(2): 104-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585545

RESUMO

Introduction: Early-onset severe obesity is usually the result of an underlying genetic disorder, and several genes have recently been shown to cause syndromic and nonsyndromic forms of obesity. The "centrosomal protein 19 (CEP19)" gene encodes for a centrosomal and ciliary protein. Homozygous variants in the CEP19 gene are extremely rare causes of early-onset severe monogenic obesity. Herein, we present a Turkish family with early-onset severe obesity with variable features. Methods: Sanger sequencing and whole-exome sequencing were performed to identify the genetic etiology in the family. Results: The index case was a 12-year-old female who presented with severe obesity (BMI of 62.7 kg/m2), metabolic syndrome, and diabetic ketoacidosis. Her nonidentical twin female siblings also had early-onset severe obesity, metabolic syndrome, and diabetes. In addition, one of the affected siblings had situs inversus abdominalis, polysplenia, lumbar vertebral fusion, and abnormal lateralization. A novel homozygous nonsense (c.169C>T, p. Arg57*) pathogenic variant was detected in exon 3 of the CEP19 gene in all affected members of the family. One unaffected sister and unaffected parents were heterozygous for the variant. This variant is predicted to cause a stop codon at amino acid sequence 57, leading to a truncated CEP19 protein. Discussion/Conclusion: Our study expands the phenotypical manifestations and variation database of CEP19 variants. The findings in one of our patients reaffirm its role in the assembly and function of both motile and immotile cilia.

3.
Proc Natl Acad Sci U S A ; 107(47): 20453-8, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059929

RESUMO

It is currently not understood how some chronic infections exhaust antigen-specific T cells over time and which pathogen components contribute to exhaustion. Here, we dissected the behavior of primed CD4(+) T cells exposed to persistent antigen using an inducible transgenic mouse system that allowed us to control antigen presentation as the only experimental variable, independent of the persistent inflammation and disease progression that complicate infectious models. Moreover, this system restricted antigen presentation to dendritic cells (DCs) and avoided confounding B, CD8(+) T, or innate cell responses. When antigen presentation was extended beyond the expansion phase, primed CD4(+) T cells survived, but exhibited reduced memory functionality in terms of their proliferative capacity and cytokine expression potential. The effect was antigen dose and time dependent, not associated with increased PD-1 expression or reduced calcium influx, but impaired Jun phosphorylation in response to TCR engagement. Upon antigen removal, the cells regained the ability to proliferate, but remained unable to produce high levels of IL-2 and TNF-α. These data show that persistent antigen by itself rapidly induces a dysfunctional state in CD4(+) T cells that is only partially reversible upon antigen removal. These findings have implications for vaccine optimization and for the possible reinvigoration of CD4(+) T cells during chronic infection.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Anergia Clonal/imunologia , Células Dendríticas/imunologia , Animais , Cálcio/metabolismo , Primers do DNA/genética , Citometria de Fluxo , Memória Imunológica/imunologia , Camundongos , Camundongos Transgênicos , Proteína Oncogênica p65(gag-jun)/metabolismo , Fosforilação , Fatores de Tempo
4.
Horm Res Paediatr ; 95(2): 137-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34689140

RESUMO

INTRODUCTION: Genetic obesity is rare and quite challenging for pediatricians in terms of early identification. Src-homology-2 (SH2) B adapter protein 1 (SH2B1) is an important component in the leptin-melanocortin pathway and is found to play an important role in leptin and insulin signaling and therefore in the pathogenesis of obesity and diabetes. Microdeletions in chromosome 16p11.2, encompassing the SH2B1 gene, are known to be associated with obesity, insulin resistance, hyperphagia, and developmental delay. The aim of our study is to report on a case series of young individuals with 16p11.2 microdeletions, including the SH2B1 gene, and provide detailed information on body mass index (BMI) development and obesity-associated comorbidities. In this way, we want to raise awareness of this syndromic form of obesity as a differential diagnosis of genetic obesity. METHODS: We describe the phenotype of 7 children (3 male; age range: 2.8-18.0 years) with 16p11.2 microdeletions, encompassing the SH2B1 gene, and present their BMI trajectories from birth onward. Screening for obesity-associated comorbidities was performed at the time of genetic diagnosis. RESULTS: All children presented with severe, early-onset obesity already at the age of 5 years combined with variable developmental delay. Five patients presented with elevated fasting insulin levels, 1 patient developed diabetes mellitus type 2, 4 patients had dyslipidemia, and 4 developed nonalcoholic fatty-liver disease. DISCUSSION/CONCLUSION: Chromosomal microdeletions in 16p11.2, including the SH2B1 gene, in children are associated with severe, early-onset obesity and comorbidities associated with insulin resistance. Early genetic testing in suspicious patients and early screening for comorbidities are recommended.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Obesidade Infantil , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Leptina/metabolismo , Masculino , Obesidade Infantil/diagnóstico , Obesidade Infantil/genética
5.
Mol Cell Pediatr ; 8(1): 10, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34448070

RESUMO

Leptin (LEP) and leptin receptor (LEPR) play a major role in energy homeostasis, metabolism, and reproductive function. While effects of biallelic likely pathogenic variants (-/-) on the phenotype are well characterized, effects of mono-allelic likely pathogenic variants (wt/-) in the LEP and LEPR gene on the phenotype compared to wild-type homozygosity (wt/wt) have not been systematically investigated. We identified in our systematic review 44 animal studies (15 on Lep, 29 on Lepr) and 39 studies in humans reporting on 130 mono-allelic likely pathogenic variant carriers with 20 distinct LEP variants and 108 heterozygous mono-allelic likely pathogenic variant carriers with 35 distinct LEPR variants. We found indications for a higher weight status in carriers of mono-allelic likely pathogenic variant in the leptin and in the leptin receptor gene compared to wt/wt, in both animal and human studies. In addition, animal studies showed higher body fat percentage in Lep and Lepr wt/- vs wt/wt. Animal studies provided indications for lower leptin levels in Lep wt/- vs. wt/wt and indications for higher leptin levels in Lepr wt/- vs wt/wt. Data on leptin levels in human studies was limited. Evidence for an impaired metabolism in mono-allelic likely pathogenic variants of the leptin and in leptin receptor gene was not conclusive (animal and human studies). Mono-allelic likely pathogenic variants in the leptin and in leptin receptor gene have phenotypic effects disposing to increased body weight and fat accumulation.

6.
J Clin Invest ; 130(3): 1479-1490, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805011

RESUMO

BACKGROUNDDICER1 is the only miRNA biogenesis component associated with an inherited tumor syndrome, featuring multinodular goiter (MNG) and rare pediatric-onset lesions. Other susceptibility genes for familial forms of MNG likely exist.METHODSWhole-exome sequencing of a kindred with early-onset MNG and schwannomatosis was followed by investigation of germline pathogenic variants that fully segregated with the disease. Genome-wide analyses were performed on 13 tissue samples from familial and nonfamilial DGCR8-E518K-positive tumors, including MNG, schwannomas, papillary thyroid cancers (PTCs), and Wilms tumors. miRNA profiles of 4 tissue types were compared, and sequencing of miRNA, pre-miRNA, and mRNA was performed in a subset of 9 schwannomas, 4 of which harbor DGCR8-E518K.RESULTSWe identified c.1552G>A;p.E518K in DGCR8, a microprocessor component located in 22q, in the kindred. The variant identified is a somatic hotspot in Wilms tumors and has been identified in 2 PTCs. Copy number loss of chromosome 22q, leading to loss of heterozygosity at the DGCR8 locus, was found in all 13 samples harboring c.1552G>A;p.E518K. miRNA profiling of PTCs, MNG, schwannomas, and Wilms tumors revealed a common profile among E518K hemizygous tumors. In vitro cleavage demonstrated improper processing of pre-miRNA by DGCR8-E518K. MicroRNA and RNA profiling show that this variant disrupts precursor microRNA production, impacting populations of canonical microRNAs and mirtrons.CONCLUSIONWe identified DGCR8 as the cause of an unreported autosomal dominant mendelian tumor susceptibility syndrome: familial multinodular goiter with schwannomatosis.FUNDINGCanadian Institutes of Health Research, Compute Canada, Alex's Lemonade Stand Foundation, the Mia Neri Foundation for Childhood Cancer, Cassa di Sovvenzioni e Risparmio fra il Personale della Banca d'Italia, and the KinderKrebsInitiative Buchholz/Holm-Seppensen.


Assuntos
Predisposição Genética para Doença , Bócio Nodular/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Neurilemoma/genética , Neurofibromatoses/genética , Proteínas de Ligação a RNA/genética , Neoplasias Cutâneas/genética , Substituição de Aminoácidos , Criança , Cromossomos Humanos Par 22/genética , Feminino , Dosagem de Genes , Estudo de Associação Genômica Ampla , Bócio Nodular/patologia , Células HEK293 , Humanos , Masculino , Neurilemoma/patologia , Neurofibromatoses/patologia , Neoplasias Cutâneas/patologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA