Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nutr Metab Cardiovasc Dis ; 31(12): 3393-3400, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34625357

RESUMO

BACKGROUND AND AIMS: High glomerular filtration rate (HGFR) is associated with cardiovascular damage in the setting of various conditions such as obesity and diabetes. Prediabetes was also associated with increased GFR, however, the association between prediabetes, HGFR and cardiovascular damage has not been investigated. In this study, we investigated the association between HGFR and early markers of cardiovascular disease in subjects with prediabetes. METHODS AND RESULTS: Augmentation pressure (Aug), augmentation index (AIx), subendocardial viability ratio (SEVR), pulse wave velocity (PWV), intima-media thickness (IMT) and estimated GFR (eGFR) were evaluated in 230 subjects with prediabetes. The eGFR was assessed using the Chronic Kidney Disease Epidemiology Collaboration formula. HGFR was defined as an eGFR above the 75th percentile. Prediabetic subjects were divided into two groups according to presence/absence of HGFR: 61 subjects with HGFR and 169 subjects without HGFR. Subjects with HGFR showed higher Aug, AIx and lower SEVR compared with prediabetic subjects with lower eGFR (14.1 ± 7.2 vs 10.8 ± 6.2, 32.9 ± 12.7 vs 27.6 ± 11.7, 153.5 ± 27.8 vs 162 ± 30.2, p < 0.05). No differences were found in PWV and IMT values between the two groups. Then, we performed multiple regression analysis to test the relationship between Aug, SEVR and several cardiovascular risk factors. In multiple regression analysis Aug was associated with age, systolic blood pressure (BP), HOMA-IR and eGFR; the major determinants of SEVR were systolic BP, HOMA-IR and eGFR. CONCLUSION: Subjects with prediabetes and HGFR exhibited an increased Aug, AIx and a reduced SEVR. These alterations are associated with eGFR, insulin resistance and systolic BP.


Assuntos
Taxa de Filtração Glomerular , Estado Pré-Diabético , Rigidez Vascular , Taxa de Filtração Glomerular/fisiologia , Humanos , Estado Pré-Diabético/fisiopatologia , Fatores de Risco , Rigidez Vascular/fisiologia
2.
Nutr Metab Cardiovasc Dis ; 31(3): 869-879, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33549441

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) may be crucial in subjects with familial hypercholesterolemia (FH). We aimed to evaluate the effect of the inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9-i) on steatosis biomarkers such as triglyceride-glucose index (TyG) and hepatic steatosis index (HSI) and analyse the role of TG/HDL in this population before and after adding-on PCSK9-i. METHODS AND RESULTS: In this observational study, we evaluated 26 genetically confirmed FH patients with NAFLD and an LDL-C off-target despite high-intensity statins plus ezetimibe. All patients added PCSK9-i treatment and obtained biochemical analysis and TyG and HSI evaluation at baseline and after six months of PCSK9-i. No difference of steatosis biomarkers was found after adding-on PCSK9-i therapy. In a secondary analysis, we divided the study population in two groups according to TG/HDL median value: high TG/HDL group (H-TG/HDL) and low TG/HDL group (L-TG/HDL). TyG and HSI were significantly lower in the L-TG/HDL than H-TG/HDL group (for TyG 9.05 ± 0.34 vs 9.51 ± 0.32; for HSI 38.43 ± 1.35 vs 41.35 ± 1.83, p value for both < 0.05). After six months of PCSK9-i therapy, TyG and HSI were significantly reduced in the L-TG/HDL group after PCSK9-i therapy (-7.5% and -8.4% respectively, p value for both < 0.05) and these biomarkers were lower compared to H-TG/HDL group (for TyG 8.37 ± 0.14 vs 9.19 ± 0.12; for HSI 35.19 ± 1.32 vs 39.48 ± 1.33, p value for both < 0.05). CONCLUSION: In conclusion, PCSK9-i therapy significantly ameliorate steatosis biomarkers in FH patients with low TG/HDL; our results appear to be consistent with a beneficial role of PCSK9-i on steatosis biomarkers in FH subjects with NAFLD.


Assuntos
Anticolesterolemiantes/uso terapêutico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Mediadores da Inflamação/sangue , Lipídeos/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Inibidores de PCSK9 , Inibidores de Serina Proteinase/uso terapêutico , Idoso , Anticolesterolemiantes/efeitos adversos , Biomarcadores/sangue , Glicemia/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Quimioterapia Combinada , Ezetimiba/uso terapêutico , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/diagnóstico , Itália , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Prospectivos , Inibidores de Serina Proteinase/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Triglicerídeos/sangue
3.
Liver Int ; 39(9): 1742-1754, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31169972

RESUMO

BACKGROUND & AIMS: In patients with non-alcoholic fatty liver disease (NAFLD), liver biopsy is the gold standard to detect non-alcoholic steatohepatitis (NASH) and stage liver fibrosis. We aimed to identify differentially expressed mRNAs and non-coding RNAs in serum samples of biopsy-diagnosed mild and severe NAFLD patients with respect to controls and to each other. METHODS: We first performed a whole transcriptome analysis through microarray (n = 12: four Control: CTRL; four mild NAFLD: NAS ≤ 4 F0; four severe NAFLD NAS ≥ 5 F3), followed by validation of selected transcripts through real-time PCRs in an independent internal cohort of 88 subjects (63 NAFLD, 25 CTRL) and in an external cohort of 50 NAFLD patients. A similar analysis was also performed on liver biopsies and HepG2 cells exposed to oleate:palmitate or only palmitate (cellular model of NAFL/NASH) at intracellular/extracellular levels. Transcript correlation with histological/clinical data was also analysed. RESULTS: We identified several differentially expressed coding/non-coding RNAs in each group of the study cohort. We validated the up-regulation of UBE2V1, BNIP3L mRNAs, RP11-128N14.5 lncRNA, TGFB2/TGFB2-OT1 coding/lncRNA in patients with NAS ≥ 5 (vs NAS ≤ 4) and the up-regulation of HBA2 mRNA, TGFB2/TGFB2-OT1 coding/lncRNA in patients with Fibrosis stages = 3-4 (vs F = 0-2). In in vitro models: UBE2V1, RP11-128N14.5 and TGFB2/TGFB2-OT1 had an increasing expression trend ranging from CTRL to oleate:palmitate or only palmitate-treated cells both at intracellular and extracellular level, while BNIP3L was up-regulated only at extracellular level. UBE2V1, RP11-128N14.5, TGFB2/TGFB2-OT1 and HBA2 up-regulation was also observed at histological level. UBE2V1, RP11-128N14.5, BNIP3L and TGFB2/TGFB2-OT1 correlated with histological/biochemical data. Combinations of TGFB2/TGFB2-OT1 + Fibrosis Index based on the four factors (FIB-4) showed an Area Under the Curve (AUC) of 0.891 (P = 3.00E-06) or TGFB2/TGFB2-OT1 + Fibroscan (AUC = 0.892, P = 2.00E-06) improved the detection of F = 3-4 with respect to F = 0-2 fibrosis stages. CONCLUSIONS: We identified specific serum coding/non-coding RNA profiles in severe and mild NAFLD patients that possibly mirror the molecular mechanisms underlying NAFLD progression towards NASH/fibrosis. TGFB2/TGFB2-OT1 detection improves FIB-4/Fibroscan diagnostic performance for advanced fibrosis discrimination.


Assuntos
Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , RNA não Traduzido/sangue , Adulto , Biomarcadores/sangue , Biópsia , Estudos de Coortes , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Valor Preditivo dos Testes , Curva ROC , Índice de Gravidade de Doença
5.
BMC Genomics ; 14: 62, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23360399

RESUMO

BACKGROUND: The molecular bases of mammalian pancreatic α cells higher resistance than ß to proinflammatory cytokines are very poorly defined. MicroRNAs are master regulators of cell networks, but only scanty data are available on their transcriptome in these cells and its alterations in diabetes mellitus. RESULTS: Through high-throughput real-time PCR, we analyzed the steady state microRNA transcriptome of murine pancreatic α (αTC1-6) and ß (ßTC1) cells: their comparison demonstrated significant differences. We also characterized the alterations of αTC1-6 cells microRNA transcriptome after treatment with proinflammatory cytokines. We focused our study on two microRNAs, miR-296-3p and miR-298-5p, which were: (1) specifically expressed at steady state in αTC1-6, but not in ßTC1 or INS-1 cells; (2) significantly downregulated in αTC1-6 cells after treatment with cytokines in comparison to untreated controls. These microRNAs share more targets than expected by chance and were co-expressed in αTC1-6 during a 6-48 h time course treatment with cytokines. The genes encoding them are physically clustered in the murine and human genome. By exploiting specific microRNA mimics, we demonstrated that experimental upregulation of miR-296-3p and miR-298-5p raised the propensity to apoptosis of transfected and cytokine-treated αTC1-6 cells with respect to αTC1-6 cells, treated with cytokines after transfection with scramble molecules. Both microRNAs control the expression of IGF1Rß, its downstream targets phospho-IRS-1 and phospho-ERK, and TNFα. Our computational analysis suggests that MAFB (a transcription factor exclusively expressed in pancreatic α cells within adult rodent islets of Langerhans) controls the expression of miR-296-3p and miR-298-5p. CONCLUSIONS: Altogether, high-throughput microRNA profiling, functional analysis with synthetic mimics and molecular characterization of modulated pathways strongly suggest that specific downregulation of miR-296-3p and miR-298-5p, coupled to upregulation of their targets as IGF1Rß and TNFα, is a major determinant of mammalian pancreatic α cells resistance to apoptosis induction by cytokines.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Citocinas/farmacologia , Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Transfecção
6.
PLoS One ; 9(2): e90093, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587221

RESUMO

AIMS/HYPOTHESIS: Incretin therapies, which are used to treat diabetic patients, cause a chronic supra-physiological increase in GLP-1 circulating levels. It is still unclear how the resulting high hormone concentrations may affect pancreatic alpha cells. The present study was designed to investigate the effects of chronic exposure to high GLP-1 levels on a cultured pancreatic alpha cell line. METHODS: α-TC1-6 cell line was cultured in the presence or absence of GLP-1 (100 nmol/l) for up to 72 h. In our model GLP-1 receptor (GLP-1R) was measured. After the cells were exposed to GLP-1 the levels of glucagon secretion were measured. Because GLP-1 acts on intracellular cAMP production, the function of GLP-1R was studied. We also investigated the effects of chronic GLP-1 exposure on the cAMP/MAPK pathway, Pax6 levels, the expression of prohormone convertases (PCs), glucagon gene (Gcg) and protein expression, glucagon and GLP-1 production. RESULTS: In our model, we were able to detect GLP-1R. After GLP-1 exposure we found a reduction in glucagon secretion. During further investigation of the function of GLP-1R, we found an activation of the cAMP/MAPK/Pax6 pathway and an increase of Gcg gene and protein expression. Furthermore we observed a significant increase in PC1/3 protein expression, GLP-1 intracellular content and GLP-1 secretion. CONCLUSIONS/INTERPRETATION: Our data indicate that the chronic exposure of pancreatic alpha cells to GLP-1 increases the ability of these cells to produce and release GLP-1. This phenomenon occurs through the stimulation of the transcription factor Pax6 and the increased expression of the protein convertase PC1/3.


Assuntos
Proteínas do Olho/genética , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células Secretoras de Glucagon/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Fatores de Transcrição Box Pareados/genética , Pró-Proteína Convertase 1/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Proteínas do Olho/agonistas , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Proteínas de Homeodomínio/agonistas , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/agonistas , Fatores de Transcrição Box Pareados/metabolismo , Pró-Proteína Convertase 1/metabolismo , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Proteínas Repressoras/agonistas , Proteínas Repressoras/metabolismo , Transdução de Sinais
7.
Endocrinology ; 151(9): 4197-206, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20573722

RESUMO

This study investigated in a pancreatic alpha-cell line the effects of chronic exposure to palmitate on the insulin and IGF-I receptor (IGF-IR) and intracellular insulin pathways. alpha-TC1-6 cells were cultured in the presence or absence of palmitate (0.5 mmol/liter) up to 48 h. Glucagon secretion, insulin and IGF-IR autophosphorylation, and insulin receptor substrate (IRS)-1, IRS-2, phosphatidylinositol kinase (PI3K) (p85 alpha), and serine-threonine protein kinase (Akt) phosphorylated (active) forms were measured. Erk 44/42 and p38 phosphorylation (P) (MAPK pathway markers) were also measured. Because MAPK can regulate Pax6, a transcription factor that controls glucagon expression, paired box gene 6 (Pax6) and glucagon gene and protein expression were also measured. Basal glucagon secretion was increased and the inhibitory effect of acute insulin exposure reduced in alpha-TC1 cells cultured with palmitate. Insulin-stimulated insulin receptor phosphorylation was greatly reduced by exposure to palmitate. Similar results were observed with IRS-1-P, PI3K (p85 alpha), and Akt-P. In contrast, with IGF-IR and IRS-2-P, the basal levels (i.e. in the absence of insulin stimulation) were higher in cells cultured with palmitate. Similar data were obtained with Erk 44/42-P and p-38-P. Pax6 and glucagon gene and protein expression were higher in cells cultured with palmitate. In these cells cultured, specifics MAPKs inhibitors were able to reduce both Pax6 and glucagon gene and protein expression. These results indicate that alpha-cells exposed to palmitate show insulin resistance of the IRS-1/PI3K/Akt pathway that likely controls glucagon secretion. In contrast, the IRS-2/MAPKs pathway is stimulated, through an activation of the IGF-IR, leading to increased Pax6 and glucagon expression. Our data support the hypothesis that the chronic elevation of fatty acids contribute to alpha-cell dysregulation frequently observed in type 2 diabetes.


Assuntos
Células Secretoras de Glucagon/efeitos dos fármacos , Palmitatos/farmacologia , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular , Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Espaço Intracelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA