Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Bioanal Chem ; 415(18): 4615-4627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37389599

RESUMO

The potential of fungi for use as biotechnological factories in the production of a range of valuable metabolites, such as enzymes, terpenes, and volatile aroma compounds, is high. Unlike other microorganisms, fungi mostly secrete secondary metabolites into the culture medium, allowing for easy extraction and analysis. To date, the most commonly used technique in the analysis of volatile organic compounds (VOCs) is gas chromatography, which is time and labour consuming. We propose an alternative ambient screening method that provides rapid chemical information for characterising the VOCs of filamentous fungi in liquid culture using a commercially available ambient dielectric barrier discharge ionisation (DBDI) source connected to a quadrupole-Orbitrap mass spectrometer. The effects of method parameters on measured peak intensities of a series of 8 selected aroma standards were optimised with the best conditions being selected for sample analysis. The developed method was then deployed to the screening of VOCs from samples of 13 fungal strains in three different types of complex growth media showing clear differences in VOC profiles across the different media, enabling determination of best culturing conditions for each compound-strain combination. Our findings underline the applicability of ambient DBDI for the direct detection and comparison of aroma compounds produced by filamentous fungi in liquid culture.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Meios de Cultura/análise , Fungos
2.
Anal Chem ; 94(14): 5483-5492, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35344339

RESUMO

Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model that─in contrast to regular inbred mice─strongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 µm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 µm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/análise , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Clofazimina/farmacologia , Granuloma/diagnóstico por imagem , Granuloma/tratamento farmacológico , Humanos , Lasers , Camundongos , Necrose , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tuberculose/diagnóstico por imagem , Tuberculose/tratamento farmacológico
3.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35005896

RESUMO

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Camundongos , Imagem Multimodal , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Gencitabina
4.
Anal Chem ; 93(6): 3061-3071, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33534548

RESUMO

An ever-increasing array of imaging technologies are being used in the study of complex biological samples, each of which provides complementary, occasionally overlapping information at different length scales and spatial resolutions. It is important to understand the information provided by one technique in the context of the other to achieve a more holistic overview of such complex samples. One way to achieve this is to use annotations from one modality to investigate additional modalities. For microscopy-based techniques, these annotations could be manually generated using digital pathology software or automatically generated by machine learning (including deep learning) methods. Here, we present a generic method for using annotations from one microscopy modality to extract information from complementary modalities. We also present a fast, general, multimodal registration workflow [evaluated on multiple mass spectrometry imaging (MSI) modalities, matrix-assisted laser desorption/ionization, desorption electrospray ionization, and rapid evaporative ionization mass spectrometry] for automatic alignment of complex data sets, demonstrating an order of magnitude speed-up compared to previously published work. To demonstrate the power of the annotation transfer and multimodal registration workflows, we combine MSI, histological staining (such as hematoxylin and eosin), and deep learning (automatic annotation of histology images) to investigate a pancreatic cancer mouse model. Neoplastic pancreatic tissue regions, which were histologically indistinguishable from one another, were observed to be metabolically different. We demonstrate the use of the proposed methods to better understand tumor heterogeneity and the tumor microenvironment by transferring machine learning results freely between the two modalities.


Assuntos
Aprendizado Profundo , Animais , Técnicas Histológicas , Camundongos , Imagem Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fluxo de Trabalho
5.
Anal Chem ; 93(8): 3742-3749, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33606520

RESUMO

Imaging mass cytometry (IMC) offers the opportunity to image metal- and heavy halogen-containing xenobiotics in a highly multiplexed experiment with other immunochemistry-based reagents to distinguish uptake into different tissue structures or cell types. However, in practice, many xenobiotics are not amenable to this analysis, as any compound which is not bound to the tissue matrix will delocalize during aqueous sample-processing steps required for IMC analysis. Here, we present a strategy to perform IMC experiments on a water-soluble polysarcosine-modified dendrimer drug-delivery system (S-Dends). This strategy involves two consecutive imaging acquisitions on the same tissue section using the same instrumental platform, an initial laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MSI) experiment followed by tissue staining and a standard IMC experiment. We demonstrated that settings can be found for the initial ablation step that leave sufficient residual tissue for subsequent antibody staining and visualization. This workflow results in lateral resolution for the S-Dends of 2 µm followed by imaging of metal-tagged antibodies at 1 µm.


Assuntos
Citometria por Imagem , Água , Sistemas de Liberação de Medicamentos , Espectrometria de Massas , Coloração e Rotulagem
6.
Anal Chem ; 92(16): 10979-10988, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32627536

RESUMO

Chemical imaging techniques are increasingly being used in combination to achieve a greater understanding of a sample. This is especially true in the case of mass spectrometry imaging (MSI), where the use of different ionization sources allows detection of different classes of molecules across a range of spatial resolutions. There has been significant recent effort in the development of data fusion algorithms that attempt to combine the benefits of multiple techniques, such that the output provides additional information that would have not been present or obvious from the individual techniques alone. However, the majority of the data fusion methods currently in use rely on image registration to generate the fused data and therefore can suffer from artifacts caused by interpolation. Here, we present a method for data fusion that does not incorporate interpolation-based artifacts into the final fused data, applied to data acquired from multiple chemical imaging modalities. The method is evaluated using simulated data and a model polymer blend sample, before being applied to biological samples of mouse brain and lung.

7.
Anal Chem ; 90(22): 13378-13384, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30220203

RESUMO

Open data formats are key to facilitating data processing, sharing, and integration. The imzML format ( http://imzml.org/ ) has drastically improved these aspects of mass spectrometry imaging data. Efficient processing of data depends on data sets which are consistent and adhere to the specifications; however, this is not always the case. Here we present a validation tool for data stored in both imzML and the HUPO-PSI mass spectrometery counterpart, mzML, to identify any deviations from the published (i)mzML standard which could cause issues for the user when visualizing or processing data. The tool is released in two forms, a graphical user interface (GUI) for ease of use, and a command line version to fit into existing workflows and pipelines. When certain known issues are encountered, such as the presence of negative values for the location of the binary data, the validator resolves the issue automatically upon saving. The GUI version of the validator also allows editing of the metadata included within the (i)mzML files in order to resolve inconsistencies. We also present a means of performing conditional validation on the metadata within (i)mzML files, where user-defined rules are validated against depending on whether specific metadata are present (or not). For example, if the MALDI term is present, then additional rules related to MALDI (such as the requirement of inclusion of laser parameters) can be validated against this. This enables a flexible and more thorough automated validation of (i)mzML data. Such a system is necessary for validating data against more comprehensive sets of metadata such as minimum reporting guidelines or metadata requirements prior to submission and acceptance of data to data repositories. We demonstrate how this tool can be used to validate against the proposed minimum reporting guidelines in MSI as well as institute specific metadata criteria. The validator tool is endorsed for validation of imzML ( http://imzml.org/ ) and mzML ( http://www.psidev.info/mzml ) and is made available through the respective Web sites. The validator is also released as open source under Mozilla Public License 2.0 at https://gitlab.com/imzML/imzMLValidator .

8.
Anal Chem ; 89(11): 5683-5687, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28492310

RESUMO

Mass spectrometry imaging by use of continuous-flow liquid microjunction sampling at discrete locations (array mode) has previously been demonstrated. In this Letter, we demonstrate continuous-flow liquid microjunction mass spectrometry imaging of proteins from thin tissue sections in raster mode and discuss advantages (a 10-fold reduction in analysis time) and challenges (suitable solvent systems, data interpretation) of the approach. Visualization of data is nontrivial, requiring correlation of solvent-flow, mass spectral data acquisition rate, data quality, and liquid microjunction sampling area. The latter is particularly important for determining optimum pixel size. The minimum achievable pixel size is related to the scan time of the instrument used. Here we show a minimum achievable pixel size of 50 µm (x-dimension) when using an Orbitrap Elite; however a pixel size of 600 µm is recommended in order to minimize the effects of oversampling on image accuracy.


Assuntos
Espectrometria de Massas/métodos , Microtomia/métodos , Proteínas/análise , Animais , Coleta de Dados , Humanos , Imagem Molecular , Manejo de Espécimes
9.
Anal Chem ; 89(21): 11293-11300, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28849641

RESUMO

Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.

10.
Anal Chem ; 88(22): 10893-10899, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27641083

RESUMO

Spatial clustering is a powerful tool in mass spectrometry imaging (MSI) and has been demonstrated to be capable of differentiating tumor types, visualizing intratumor heterogeneity, and segmenting anatomical structures. Several clustering methods have been applied to mass spectrometry imaging data, but a principled comparison and evaluation of different clustering techniques presents a significant challenge. We propose that testing whether the data has a multivariate normal distribution within clusters can be used to evaluate the performance when using algorithms that assume normality in the data, such as k-means clustering. In cases where clustering has been performed using the cosine distance, conversion of the data to polar coordinates prior to normality testing should be performed to ensure normality is tested in the correct coordinate system. In addition to these evaluations of internal consistency, we demonstrate that the multivariate normal distribution can then be used as a basis for statistical modeling of MSI data. This allows the generation of synthetic MSI data sets with known ground truth, providing a means of external clustering evaluation. To demonstrate this, reference data from seven anatomical regions of an MSI image of a coronal section of mouse brain were modeled. From this, a set of synthetic data based on this model was generated. Results of r2 fitting of the chi-squared quantile-quantile plots on the seven anatomical regions confirmed that the data acquired from each spatial region was found to be closer to normally distributed in polar space than in Euclidean. Finally, principal component analysis was applied to a single data set that included synthetic and real data. No significant differences were found between the two data types, indicating the suitability of these methods for generating realistic synthetic data.


Assuntos
Encéfalo/diagnóstico por imagem , Espectrometria de Massas , Animais , Conjuntos de Dados como Assunto , Camundongos
11.
Anal Chem ; 88(17): 8433-40, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27447021

RESUMO

Combined mass spectrometry imaging methods in which two different techniques are executed on the same sample have recently been reported for a number of sample types. Such an approach can be used to examine the sampling effects of the first technique with a second, higher resolution method and also combines the advantages of each technique for a more complete analysis. In this work matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) was used to study the effects of liquid extraction surface analysis (LESA) sampling on mouse brain tissue. Complementary multivariate analysis techniques including principal component analysis, non-negative matrix factorization, and t-distributed stochastic neighbor embedding were applied to MALDI MS images acquired from tissue which had been sampled by LESA to gain a better understanding of localized tissue washing in LESA sampling. It was found that MALDI MS images could be used to visualize regions sampled by LESA. The variability in sampling area, spatial precision, and delocalization of analytes in tissue induced by LESA were assessed using both single-ion images and images provided by multivariate analysis.


Assuntos
Química Encefálica , Extração Líquido-Líquido , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Camundongos , Análise Multivariada , Propriedades de Superfície
12.
Anal Chem ; 88(13): 6758-66, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27228471

RESUMO

We have shown previously that coupling of high field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility, with liquid extraction surface analysis (LESA) mass spectrometry of tissue results in significant improvements in the resulting protein mass spectra. Here, we demonstrate LESA FAIMS mass spectrometry imaging of proteins in sections of mouse brain and liver tissue. The results are compared with LESA mass spectrometry images obtained in the absence of FAIMS. The results show that the number of different protein species detected can be significantly increased by incorporating FAIMS into the workflow. A total of 34 proteins were detected by LESA FAIMS mass spectrometry imaging of mouse brain, of which 26 were unique to FAIMS, compared with 15 proteins (7 unique) detected by LESA mass spectrometry imaging. A number of proteins were identified including α-globin, 6.8 kDa mitochondrial proteolipid, macrophage migration inhibitory factor, ubiquitin, ß-thymosin 4, and calmodulin. A total of 40 species were detected by LESA FAIMS mass spectrometry imaging of mouse liver, of which 29 were unique to FAIMS, compared with 24 proteins (13 unique) detected by LESA mass spectrometry imaging. The spatial distributions of proteins identified in both LESA mass spectrometry imaging and LESA FAIMS mass spectrometry imaging were in good agreement indicating that FAIMS is a suitable tool for inclusion in mass spectrometry imaging workflows.


Assuntos
Encéfalo/metabolismo , Fígado/metabolismo , Espectrometria de Massas/métodos , Proteínas/análise , Sequência de Aminoácidos , Animais , Encéfalo/patologia , Espectrometria de Mobilidade Iônica , Fígado/patologia , Camundongos
13.
Anal Chem ; 88(19): 9451-9458, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27558772

RESUMO

The amount of data produced by spectral imaging techniques, such as mass spectrometry imaging, is rapidly increasing as technology and instrumentation advances. This, combined with an increasingly multimodal approach to analytical science, presents a significant challenge in the handling of large data from multiple sources. Here, we present software that can be used through the entire analysis workflow, from raw data through preprocessing (including a wide range of methods for smoothing, baseline correction, normalization, and image generation) to multivariate analysis (for example, memory efficient principal component analysis (PCA), non-negative matrix factorization (NMF), maximum autocorrelation factor (MAF), and probabilistic latent semantic analysis (PLSA)), for data sets acquired from single experiments to large multi-instrument, multimodality, and multicenter studies. SpectralAnalysis was also developed with extensibility in mind to stimulate development, comparisons, and evaluation of data analysis algorithms.

14.
Anal Chem ; 87(13): 6794-800, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26066713

RESUMO

Previously we have shown that liquid extraction surface analysis (LESA) mass spectrometry is suitable for the analysis of intact proteins from a range of biological substrates. Here we show that LESA mass spectrometry may be coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for top-down protein analysis directly from thin tissue sections (mouse liver, mouse brain) and from bacterial colonies (Escherichia coli) growing on agar. Incorporation of FAIMS results in significant improvements in signal-to-noise and reduced analysis time. Abundant protein signals are observed in single scan mass spectra. In addition, FAIMS enables gas-phase separation of molecular classes, for example, lipids and proteins, enabling improved analysis of both sets of species from a single LESA extraction.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Animais , Camundongos , Propriedades de Superfície
15.
Anal Bioanal Chem ; 407(8): 2047-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25649999

RESUMO

The choice of colour scheme used to present data can have a dramatic effect on the perceived structure present within the data. This is of particular significance in mass spectrometry imaging (MSI), where ion images that provide 2D distributions of a wide range of analytes are used to draw conclusions about the observed system. Commonly employed colour schemes are generally suboptimal for providing an accurate representation of the maximum amount of data. Rainbow-based colour schemes are extremely popular within the community, but they introduce well-documented artefacts which can be actively misleading in the interpretation of the data. In this article, we consider the suitability of colour schemes and composite image formation found in MSI literature in the context of human colour perception. We also discuss recommendations of rules for colour scheme selection for ion composites and multivariate analysis techniques such as principal component analysis (PCA).


Assuntos
Percepção de Cores , Diagnóstico por Imagem , Espectrometria de Massas , Humanos , Análise de Componente Principal
16.
Anal Chem ; 85(6): 3071-8, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23394348

RESUMO

A memory efficient algorithm for the computation of principal component analysis (PCA) of large mass spectrometry imaging data sets is presented. Mass spectrometry imaging (MSI) enables two- and three-dimensional overviews of hundreds of unlabeled molecular species in complex samples such as intact tissue. PCA, in combination with data binning or other reduction algorithms, has been widely used in the unsupervised processing of MSI data and as a dimentionality reduction method prior to clustering and spatial segmentation. Standard implementations of PCA require the data to be stored in random access memory. This imposes an upper limit on the amount of data that can be processed, necessitating a compromise between the number of pixels and the number of peaks to include. With increasing interest in multivariate analysis of large 3D multislice data sets and ongoing improvements in instrumentation, the ability to retain all pixels and many more peaks is increasingly important. We present a new method which has no limitation on the number of pixels and allows an increased number of peaks to be retained. The new technique was validated against the MATLAB (The MathWorks Inc., Natick, Massachusetts) implementation of PCA (princomp) and then used to reduce, without discarding peaks or pixels, multiple serial sections acquired from a single mouse brain which was too large to be analyzed with princomp. Then, k-means clustering was performed on the reduced data set. We further demonstrate with simulated data of 83 slices, comprising 20,535 pixels per slice and equaling 44 GB of data, that the new method can be used in combination with existing tools to process an entire organ. MATLAB code implementing the memory efficient PCA algorithm is provided.


Assuntos
Dispositivos de Armazenamento em Computador , Bases de Dados Factuais , Espectrometria de Massas/métodos , Análise de Componente Principal/métodos , Animais , Bases de Dados Factuais/estatística & dados numéricos , Camundongos , Ratos
17.
Anal Chem ; 85(15): 7146-53, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23879734

RESUMO

Mass spectrometry imaging is a powerful method for imaging and in situ characterization of lipids in thin tissue sections. Structural elucidation of lipids is often achieved via collision induced dissociation, and lithium-lipid adducts have been widely reported as providing the most structurally informative fragment ions. We present a method for the incorporation of lithium salts into tissue imaging experiments via fixation of samples in formal lithium solutions. The method is suitable for preparation of single tissue sections, or as an immersion fixation method for whole tissue blocks or organs prior to sectioning. We compare lithium adduct detection and MALDI-MSI of murine brain from analysis of tissues prepared in different ways. Tissues prepared in formal solutions containing lithium or sodium salts before coating in matrix via air-spray deposition are compared with fresh samples coated in lithium-doped matrix preparations by either dry-coating or air-spray deposition. Sample preparation via fixation in formal lithium is shown to yield the highest quality images of lithium adducts, resulting in acquisition of more informative product ion spectra in MALDI MS/MS profiling and imaging experiments. Finally, the compatibility of formal lithium solutions with standard histological staining protocols (hemotoxylin and eosin, Van Giessen and Oil Red O) is demonstrated in a study of human liver tissue.


Assuntos
Metabolismo dos Lipídeos , Lítio/metabolismo , Espectrometria de Massas , Fixação de Tecidos/métodos , Humanos , Fígado/metabolismo , Imagem Molecular , Coloração e Rotulagem
18.
Sci Rep ; 13(1): 22020, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086827

RESUMO

Chromosome conformation capture (3C) sequencing approaches, like Hi-C or micro-C, allow for an unbiased view of chromatin interactions. Most analysis methods rely on so-called interaction matrices, which are derived from counting read pairs in bins of fixed size. Here, we propose the Voronoi diagram, as implemented in Voronoi for chromosome conformation capture data visualization (v3c-viz) to visualize 3C data. The Voronoi diagram corresponds to an adaptive-binning strategy that adapts to the local densities of points. In this way, visualization of data obtained by moderate sequencing depth pinpoint many, if not most, interesting features such as high frequency contacts. The favorable visualization properties of the Voronoi diagram indicate that the Voronoi diagram as density estimator can be used to identify high frequency contacts at a resolution approaching the typical size of enhancers and promoters. v3c-viz is available at https://github.com/imbbLab/v3c-viz .


Assuntos
Cromatina , Cromossomos , Cromossomos/genética , Cromatina/genética , Conformação Molecular , Sequências Reguladoras de Ácido Nucleico , Regiões Promotoras Genéticas
19.
J Mass Spectrom Adv Clin Lab ; 23: 26-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35156074

RESUMO

Mass spectrometry imaging (MSI) is used in many aspects of clinical research, including pharmacokinetics, toxicology, personalised medicine, and surgical decision-making. Maximising its potential requires the spatial integration of MSI images with imaging data from existing clinical imaging modalities, such as histology and MRI. To ensure that the information is properly integrated, all contributing images must be accurately aligned. This process is called image registration and is the focus of this review. In light of the ever-increasing spatial resolution of MSI instrumentation and a diversification of multi-modal MSI studies (e.g., spatial omics, 3D-MSI), the accuracy, versatility, and precision of image registration must increase accordingly. We review the application of image registration to align MSI data with different clinically relevant ex vivo and in vivo imaging techniques. Based on this, we identify steps in the current image registration processes where there is potential for improvement. Finally, we propose a roadmap for community efforts to address these challenges in order to increase registration quality and help MSI to fully exploit its multi-modal potential.

20.
Food Chem ; 385: 132529, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35279497

RESUMO

Mass Spectrometry imaging (MS imaging) provides spatial information for a wide range of compound classes in different sample matrices. We used MS imaging to investigate the distribution of components in fresh and processed food, including meat, dairy and bakery products. The MS imaging workflow was optimized to cater to the specific properties and challenges of the individual samples. We successfully detected highly nonpolar and polar constituents such as beta-carotene and anthocyanins, respectively. For the first time, the distributions of a contaminant and a food additive were visualized in processed food. We detected acrylamide in German gingerbread and investigated the penetration of the preservative natamycin into cheese. For this purpose, a new data analysis tool was developed to study the penetration of analytes from uneven surfaces. Our results show that MS imaging has great potential in food analysis to provide relevant information about components' distributions, particularly those underlying official regulations.


Assuntos
Antocianinas , Contaminação de Alimentos , Antocianinas/análise , Fast Foods/análise , Análise de Alimentos , Contaminação de Alimentos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA