Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 12(8): 786-95, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743478

RESUMO

Here we have used a systems biology approach to study innate and adaptive responses to vaccination against influenza in humans during three consecutive influenza seasons. We studied healthy adults vaccinated with trivalent inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). TIV induced higher antibody titers and more plasmablasts than LAIV did. In subjects vaccinated with TIV, early molecular signatures correlated with and could be used to accurately predict later antibody titers in two independent trials. Notably, expression of the kinase CaMKIV at day 3 was inversely correlated with later antibody titers. Vaccination of CaMKIV-deficient mice with TIV induced enhanced antigen-specific antibody titers, which demonstrated an unappreciated role for CaMKIV in the regulation of antibody responses. Thus, systems approaches can be used to predict immunogenicity and provide new mechanistic insights about vaccines.


Assuntos
Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Orthomyxoviridae/imunologia , Imunidade Adaptativa/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Perfilação da Expressão Gênica , Testes de Inibição da Hemaglutinação , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estações do Ano , Biologia de Sistemas/métodos , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
2.
Genes Dev ; 28(9): 995-1004, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24788518

RESUMO

Accidental or deliberate ionizing radiation exposure can be fatal due to widespread hematopoietic destruction. However, little is known about either the course of injury or the molecular pathways that regulate the subsequent regenerative response. Here we show that the Wnt signaling pathway is critically important for regeneration after radiation-induced injury. Using Wnt reporter mice, we show that radiation triggers activation of Wnt signaling in hematopoietic stem and progenitor cells. ß-Catenin-deficient mice, which lack the ability to activate canonical Wnt signaling, exhibited impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. We found that, as part of the mechanism, hematopoietic stem cells lacking ß-catenin fail to suppress the generation of reactive oxygen species and cannot resolve DNA double-strand breaks after radiation. Consistent with the impaired response to radiation, ß-catenin-deficient mice are also unable to recover effectively after chemotherapy. Collectively, these data indicate that regenerative responses to distinct hematopoietic injuries share a genetic dependence on ß-catenin and raise the possibility that modulation of Wnt signaling may be a path to improving bone marrow recovery after damage.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Estresse Oxidativo/genética , Regeneração/genética , beta Catenina/genética , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Estimativa de Kaplan-Meier , Camundongos , Estresse Oxidativo/efeitos da radiação , Lesões por Radiação/genética , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação , Transdução de Sinais , Via de Sinalização Wnt/efeitos da radiação
3.
J Biol Chem ; 287(38): 31658-65, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22778263

RESUMO

Many cellular Ca(2+)-dependent signaling cascades utilize calmodulin (CaM) as the intracellular Ca(2+) receptor. Ca(2+)/CaM binds and activates a plethora of enzymes, including CaM kinases (CaMKs). CaMKK2 is one of the most versatile of the CaMKs and will phosphorylate and activate CaMKI, CaMKIV, and AMP-activated protein kinase. Cell expression of CaMKK2 is limited, yet CaMKK2 is involved in regulating many important physiological and pathophysiological processes, including energy balance, adiposity, glucose homeostasis, hematopoiesis, inflammation, and cancer. Here, we explore known functions of CaMKK2 and discuss its potential as a target for therapeutic intervention.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica , Tecido Adiposo/enzimologia , Adiposidade , Animais , Feminino , Glucose/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Fígado/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Fosforilação , Neoplasias da Próstata/enzimologia , Ratos , Transdução de Sinais , Distribuição Tecidual
4.
J Biol Chem ; 287(14): 11579-91, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334678

RESUMO

Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) plays a key role in regulating food intake and energy expenditure at least in part by its actions in hypothalamic neurons. Previously, we showed that loss of CaMKK2 protected mice from high-fat diet (HFD)-induced obesity and glucose intolerance. However, although pair feeding HFD to WT mice to match food consumption of CAMKK2-null mice slowed weight gain, it failed to protect from glucose intolerance. Here we show that relative to WT mice, HFD-fed CaMKK2-null mice are protected from inflammation in adipose and remain glucose-tolerant. Moreover, loss of CaMKK2 also protected mice from endotoxin shock and fulminant hepatitis. We explored the expression of CaMKK2 in immune cells and found it to be restricted to those of the monocyte/macrophage lineage. CaMKK2-null macrophages exhibited a remarkable deficiency to spread, phagocytose bacteria, and synthesize cytokines in response to the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS). Mechanistically, loss of CaMKK2 uncoupled the TLR4 cascade from activation of protein tyrosine kinase 2 (PYK2; also known as PTK2B). Our findings uncover an important function for CaMKK2 in mediating mechanisms that control the amplitude of macrophage inflammatory responses to excess nutrients or pathogen derivatives.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Macrófagos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/deficiência , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Adesão Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Quinase 2 de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Intolerância à Glucose/etiologia , Intolerância à Glucose/prevenção & controle , Hepatite/etiologia , Hepatite/prevenção & controle , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Choque Séptico/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
5.
Cancer Immunol Res ; 11(1): 109-122, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36301267

RESUMO

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of energy homeostasis in several cell types. Expression of this enzyme in tumor cells promotes proliferation and migration, and expression in tumor-associated immune cells facilitates M2 macrophage polarization and the development of myeloid-derived suppressor cells. Thus, there has been interest in developing CaMKK2 inhibitors as potential anticancer therapeutics. One impediment to clinical development of these agents is that the roles of CaMKK2 in other cellular compartments within the tumor immune microenvironment remain to be established. We report herein that CaMKK2 is expressed at low basal levels in natural killer (NK) cells but is upregulated in tumor-infiltrating NK cells where it suppresses apoptosis and promotes proliferation. NK cell-intrinsic deletion of CaMKK2 increased metastatic progression in several murine models, establishing a critical role for this enzyme in NK cell-mediated antitumor immunity. Ablation of the CaMKK2 protein, but not inhibition of its kinase activity, resulted in decreased NK-cell survival. These results indicate an important scaffolding function for CaMKK2 in NK cells and suggest that competitive CaMKK2 inhibitors and ligand-directed degraders (LDD) are likely to have distinct therapeutic utilities. Finally, we determined that intracellular lactic acid is a key driver of CaMKK2 expression, suggesting that upregulated expression of this enzyme is an adaptive mechanism by which tumor-infiltrating NK cells mitigate the deleterious effects of a lactic acid-rich tumor microenvironment. The findings of this study should inform strategies to manipulate the CaMKK2-signaling axis as a therapeutic approach in cancer.


Assuntos
Neoplasias , Humanos , Camundongos , Animais , Neoplasias/metabolismo , Transdução de Sinais , Fosforilação , Apoptose , Macrófagos , Microambiente Tumoral , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo
6.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672221

RESUMO

The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial. Herein, we disclose SGC-CAMKK2-1, a selective chemical probe that targets CAMKK2.

7.
Stem Cell Rev Rep ; 18(7): 2513-2521, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35262902

RESUMO

Little is known about a regulatory role of CaMKK2 for hematopoietic stem (HSC) and progenitor (HPC) cell function. To assess this, we used Camkk2-/- and wild type (WT) control mouse bone marrow (BM) cells. BM cells were collected/processed and compared under hypoxia (3% oxygen; physioxia) vs. ambient air (~21% oxygen). Subjecting cells collected to ambient air, even for a few minutes, causes a stress that we termed Extra Physiological Shock/Stress (EPHOSS) that causes differentiation of HSCs and HPCs. We consider physioxia collection/processing a more relevant way to assess HSC/HPC numbers and function, as the cells remain in an oxygen tension closer physiologic conditions. Camkk2-/- cells collected/processed at 3% oxygen had positive and negative effects respectively on HSCs (by engraftment using competitive transplantation with congenic donor and competitor cells and lethally irradiated congenic recipient mice), and HPCs (by colony forming assays of CFU-GM, BFU-E, and CFU-GEMM) compared to WT cells processed in ambient air. Thus, with cells collected/processed under physioxia, and therefore never exposed and naïve to ambient air conditions, CaMKK2 not only appears to act as an HSC to HPC differentiation fate determinant, but as we found for other intracellular mediators, the Camkk-/- mouse BM cells were relatively resistant to effects of EPHOSS. This information is of potential use for modulation of WT BM HSCs and HPCs for future clinical advantage.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Oxigênio , Animais , Células da Medula Óssea , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Camundongos , Camundongos Knockout , Oxigênio/farmacologia
8.
Nat Commun ; 13(1): 6483, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309495

RESUMO

Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos , Microambiente Tumoral , Terapia de Imunossupressão , Neurônios/patologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
9.
Front Immunol ; 12: 754083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712241

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a hetero geneous group of cells, which can suppress the immune response, promote tumor progression and impair the efficacy of immunotherapies. Consequently, the pharmacological targeting of MDSC is emerging as a new immunotherapeutic strategy to stimulate the natural anti-tumor immune response and potentiate the efficacy of immunotherapies. Herein, we leveraged genetically modified models and a small molecule inhibitor to validate Calcium-Calmodulin Kinase Kinase 2 (CaMKK2) as a druggable target to control MDSC accumulation in tumor-bearing mice. The results indicated that deletion of CaMKK2 in the host attenuated the growth of engrafted tumor cells, and this phenomenon was associated with increased antitumor T cell response and decreased accumulation of MDSC. The adoptive transfer of MDSC was sufficient to restore the ability of the tumor to grow in Camkk2-/- mice, confirming the key role of MDSC in the mechanism of tumor rejection. In vitro studies indicated that blocking of CaMKK2 is sufficient to impair the yield of MDSC. Surprisingly, MDSC generated from Camkk2-/- bone marrow cells also showed a higher ability to terminally differentiate toward more immunogenic cell types (e.g inflammatory macrophages and dendritic cells) compared to wild type (WT). Higher intracellular levels of reactive oxygen species (ROS) accumulated in Camkk2-/- MDSC, increasing their susceptibility to apoptosis and promoting their terminal differentiation toward more mature myeloid cells. Mechanistic studies indicated that AMP-activated protein kinase (AMPK), which is a known CaMKK2 proximal target controlling the oxidative stress response, fine-tunes ROS accumulation in MDSC. Accordingly, failure to activate the CaMKK2-AMPK axis can account for the elevated ROS levels in Camkk2-/- MDSC. These results highlight CaMKK2 as an important regulator of the MDSC lifecycle, identifying this kinase as a new druggable target to restrain MDSC expansion and enhance the efficacy of anti-tumor immunotherapy.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/fisiologia , Células Supressoras Mieloides/enzimologia , Proteínas de Neoplasias/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Transferência Adotiva , Animais , Apoptose , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/deficiência , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Feminino , Depleção Linfocítica , Linfoma/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/metabolismo , Células Supressoras Mieloides/fisiologia , Células Supressoras Mieloides/transplante , Mielopoese , Espécies Reativas de Oxigênio , Microambiente Tumoral
10.
Front Immunol ; 11: 217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117323

RESUMO

With this article, the authors aim to honor the memory of Serafino Zappacosta, who had been their mentor during the early years of their career in science. The authors discuss how the combination of Serafino Zappacosta's extraordinary commitment to teaching and passion for science created a fostering educational environment that led to the creation of the "Ruggero Ceppellini Advanced School of Immunology." The review also illustrates how the research on the MHC and the inspirational scientific context in the Zappacosta's laboratory influenced the authors' early scientific interests, and subsequent professional work as immunologists.


Assuntos
Alergia e Imunologia/história , Linfócitos T/imunologia , Alergia e Imunologia/educação , História do Século XX , História do Século XXI , Humanos , Imunidade Celular , Complexo Principal de Histocompatibilidade , Masculino , Mentores , Pesquisa
11.
Int J Nanomedicine ; 14: 3403-3411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190799

RESUMO

Aim: To quantitatively and sensitively investigate the biodistribution of immune cells after systemic administration. Methods: Immune cells were loaded with plasmonic gold nanostars (GNS) tracking probes. Inductively coupled plasma mass spectrometry (ICP-MS) was used for quantitative gold mass measurement and two-photon photoluminescence (TPL) was used for high-resolution sensitive optical imaging. Results: GNS nanoparticles were loaded successfully into immune cells without negative effect on cellular vitality. Liver and spleen were identified to be the major organs for macrophage cells uptake after systematic administration. A small amount of macrophage cells were detected in the tumor site in our murine lymphoma animal model. Conclusion: GNS has great potential as a biocompatible marker for quantitative tracking and high-resolution imaging of immune cells at the cellular level.


Assuntos
Ouro/química , Linfócitos/metabolismo , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Macrófagos/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos C57BL , Distribuição Tecidual
12.
Nat Commun ; 10(1): 2450, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164648

RESUMO

Tumor-associated myeloid cells regulate tumor growth and metastasis, and their accumulation is a negative prognostic factor for breast cancer. Here we find calcium/calmodulin-dependent kinase kinase (CaMKK2) to be highly expressed within intratumoral myeloid cells in mouse models of breast cancer, and demonstrate that its inhibition within myeloid cells suppresses tumor growth by increasing intratumoral accumulation of effector CD8+ T cells and immune-stimulatory myeloid subsets. Tumor-associated macrophages (TAMs) isolated from Camkk2-/- mice expressed higher levels of chemokines involved in the recruitment of effector T cells compared to WT. Similarly, in vitro generated Camkk2-/- macrophages recruit more T cells, and have a reduced capability to suppress T cell proliferation, compared to WT. Treatment with CaMKK2 inhibitors blocks tumor growth in a CD8+ T cell-dependent manner, and facilitates a favorable reprogramming of the immune cell microenvironment. These data, credential CaMKK2 as a myeloid-selective checkpoint, the inhibition of which may have utility in the immunotherapy of breast cancer.


Assuntos
Neoplasias da Mama/imunologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/imunologia , Carcinoma/imunologia , Neoplasias Mamárias Animais/imunologia , Células Mieloides/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/imunologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Proliferação de Células , Quimiocinas/imunologia , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Evasão Tumoral/genética
13.
J Gastroenterol Hepatol ; 23(7 Pt 2): e105-10, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17645467

RESUMO

BACKGROUND AND AIM: Hepatitis A virus (HAV) causes a transient illness leaving permanent protection against reinfection. Few data are available on the regulatory mechanisms involved in the CD4+ T helper activation. We aimed to investigate the frequency and function of CD3+/CD4+/CD25+ T cells with regulatory function (Tregs) during acute HAV infection. METHODS: We enrolled 35 consecutive patients and 15 healthy donors, enumerated Tregs by flow cytometry assay and evaluated, after immunomagnetical sorting with magnetic beads, their ability to inhibit the proliferation of CD4+/CD25- T lymphocytes at different ratios (1:1, 1:10, 1:20). RESULTS: All patients had the usual course of infection. Our immunological analysis showed Tregs frequency in these patients (6.5% [range, 5-8.8%]; 36 [range, 10-87] cells) did not have any statistical difference compared with healthy donors (6% [range, 5-8%]; 48 (range, 23-71) cells), while their ability to suppress CD4+/CD25- was drastically reduced at different ratios (Mann-Whitney U-test; ratio 1:1, 93% vs 72%, z = -3.34, P < 0.0001; ratio 1:10, 86% vs 51%, z = -4.04, P < 0.001; ratio 1:20, 56% vs 30%, z = -3.43, P < 0.0001). After the seroconversion, CD4+/CD25+ frequency and function in HAV-infected patients did not differ from healthy individuals. CONCLUSION: CD4+/CD25+ T cells seem to be impaired in their function during the HAV acute infection. This evidence might help to determine an optimal T helper cell immune network that is a predisposing factor for a self-limiting disease.


Assuntos
Antígenos CD4/análise , Vírus da Hepatite A Humana/imunologia , Hepatite A/imunologia , Subunidade alfa de Receptor de Interleucina-2/análise , Ativação Linfocitária , Linfócitos T Reguladores/imunologia , Adulto , Complexo CD3/análise , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Masculino , Linfócitos T Reguladores/virologia
14.
Mol Vis ; 13: 1562-7, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17893656

RESUMO

PURPOSE: Recent studies suggest that natural killer (NK) cells exert effector/regulatory properties on both innate and adaptive responses via release of different cytokines. While some information indicates NK cells in allergic asthma and atopic dermatitis, no data are available for allergic conjunctivitis. The aim of this study was to evaluate NK in the blood and the conjunctiva of patients with vernal keratoconjunctivitis (VKC). METHODS: Six patients with active VKC and six healthy subjects were included in the study. Blood samples and conjunctival biopsies were taken from each patient. NK cells in blood and conjunctiva were quantified by flow cytometry and immunohistochemistry, respectively. Clinical findings of the patients were recorded, conjunctival immune infiltrates were characterized, and both parameters were correlated to NK cell number. RESULTS: Compared to healthy subjects, NK cells were significantly decreased in the blood and increased in the conjunctiva of patients with VKC. CONCLUSIONS: Together with lymphocytes, eosinophils, and mast cells, NK cells constitute a significant proportion of the immune cells infiltrating VKC conjunctiva. This finding indicates a potential role of NK and innate immunity in the regulation of allergic reactions and in diseases such as VKC. New therapeutic alternatives for modulating allergic inflammation might target NK cells.


Assuntos
Túnica Conjuntiva/patologia , Conjuntivite Alérgica/sangue , Conjuntivite Alérgica/patologia , Células Matadoras Naturais/patologia , Adolescente , Adulto , Antígeno CD56/análise , Contagem de Células , Criança , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Células Matadoras Naturais/imunologia , Masculino , Receptores de IgG/análise
16.
Cell Death Dis ; 8(10): e3076, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981105

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are predominantly quiescent in adults, but proliferate in response to bone marrow (BM) injury. Here, we show that deletion of Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) promotes HSPC regeneration and hematopoietic recovery following radiation injury. Using Camkk2-enhanced green fluorescent protein (EGFP) reporter mice, we found that Camkk2 expression is developmentally regulated in HSPC. Deletion of Camkk2 in HSPC results in a significant downregulation of genes affiliated with the quiescent signature. Accordingly, HSPC from Camkk2 null mice have a high proliferative capability when stimulated in vitro in the presence of BM-derived endothelial cells. In addition, Camkk2 null mice are more resistant to radiation injury and show accelerated hematopoietic recovery, enhanced HSPC regeneration and ultimately a prolonged survival following sublethal or lethal total body irradiation. Mechanistically, we propose that CaMKK2 regulates the HSPC response to hematopoietic damage by coupling radiation signaling to activation of the anti-proliferative AMP-activated protein kinase. Finally, we demonstrated that systemic administration of the small molecule CaMKK2 inhibitor, STO-609, to irradiated mice enhanced HSPC recovery and improved survival. These findings identify CaMKK2 as an important regulator of HSPC regeneration and demonstrate CaMKK2 inhibition is a novel approach to promoting hematopoietic recovery after BM injury.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Calmodulina/genética , Células-Tronco Hematopoéticas/metabolismo , Lesões por Radiação/tratamento farmacológico , Animais , Benzimidazóis/administração & dosagem , Cálcio/metabolismo , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Knockout , Naftalimidas/administração & dosagem , Lesões por Radiação/genética , Lesões por Radiação/patologia , Regeneração/genética , Transdução de Sinais/efeitos dos fármacos , Irradiação Corporal Total
17.
J Leukoc Biol ; 78(2): 372-82, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15923217

RESUMO

We have described previously that hypervariable region 1 (HVR1) variants of hepatitis C virus (HCV) frequently act as T cell receptor (TCR) antagonists for HVR1-specific helper T cells. These naturally occurring HVR1-antagonistic sequences interfered with the effects of HVR1-agonistic sequences such as TCR down-regulation and early activatory signals. By taking advantage of these findings, in this paper, we have analyzed the fate of these HVR1-specific antagonized CD4+ T cells. We present the evidence that TCR antagonism renders agonist-activated T cells susceptible to bystander CD95-mediated killing by suppressing the expression of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-like inhibitor proteins. To verify whether the TCR repertoire of a HVR1-specific T cell population could be modified consequently, we used a HVR1-agonistic sequence to induce in vitro CD4+ T cells and another HVR1 sequence with antagonistic property to mediate suppressive phenomena. HVR1-specific T cells were cultured with the agonist alone or with the agonist plus the antagonist. HVR1 specificity and T cell repertoires were followed over time by analyzing TCR beta-variable gene segment by "spectratyping". The results showed that the specificity for the agonist was rapidly spoiled after culture in the presence of the antagonist, and the TCR repertoire was strongly modified as a result of CD95-mediated apoptosis of agonist-specific clonal expansions. These data support the hypothesis that in HCV infection, the generation of TCR antagonists may reshape the T cell repertoire, representing an efficacious immune evasion strategy of a highly mutant pathogen.


Assuntos
Antígenos Virais/imunologia , Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Hepacivirus/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/antagonistas & inibidores , Subpopulações de Linfócitos T/imunologia , Proteínas Virais/imunologia , Receptor fas/imunologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo/imunologia , Epitopos de Linfócito T , Hepacivirus/patogenicidade , Humanos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Serpinas/biossíntese , Serpinas/imunologia , Proteínas Virais/biossíntese
18.
Int J Cardiol ; 224: 206-212, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27657475

RESUMO

BACKGROUND: Naive T lymphocytes recirculate through the body, traveling from secondary lymphoid organs through tissues and via lymphatic vessels and peripheral blood into other secondary lymphoid organs and into the bone marrow. In these tissues, lymphocytes are exposed to the chemokine CXCL12 which is abundantly produced in bone marrow and in lymph nodes by stromal cells. CXCL12 is known to drive lymphocytes chemotaxis and, in cells types such as stem cells, an antiapopototic effect has been described. METHODS: Here we analyzed the effect of CXCL12 exposure on naïve CD4+ T lymphocytes purified from peripheral blood by immunomagnetic negative isolation and cultured in a nutrient poor medium. We also studied, mainly by western blot analysis, the signaling pathways involved in CXCL12 action on naïve CD4+ T lymphocytes. RESULTS: We found that CXCL12-exposed cells survived longer than untreated ones and this prolonged lifespan was specific for resting naïve lymphocytes, while in vitro activated lymphoblasts died rapidly despite CXCL12 treatment. We demonstrated that the increased percentage of living cells observed upon CXCL12 administration was not due to induction of proliferation but to a prosurvival effect of this chemokine. Moreover, our data suggest that this prosurvival effect on naïve CD4+ T lymphocytes might likely be mediated by PKA-dependent CREB activation and consequent increased expression of the antiapoptotic factors Bcl2 and BclXl. CONCLUSIONS: This newly reported activity of CXCL12 might contribute to the maintenance of the naïve T lymphocytes pool in vivo, which is needed to ensure a proper immune response to new antigens.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Sobrevivência Celular/fisiologia , Quimiocina CXCL12/metabolismo , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Humanos , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima , Proteína bcl-X/metabolismo
19.
J Leukoc Biol ; 74(6): 1117-24, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12972513

RESUMO

The ability of the envelope glycoprotein gp120 [human immunodeficiency virus (HIV) env] to induce intracellular signals is thought to contribute to HIV-1 pathogenesis. In the present study, we found that the exposure of CD4+ CD45RA+ naive T cells to HIVenv results in a long-lasting hyporesponsiveness to antigen stimulation. This phenomenon is not dependent on CD4-mediated signals and also can be generated by the exposure of naive T cell to soluble CD4-HIVenv complexes. The analysis of the proximal signaling reveals that HIVenv does not activate Lck as well as the mitogen-activated protein kinase intermediate cascade. Conversely, the envelope glycoprotein stimulates the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activity and induces the progressive accumulation of the phosphorylated form of the cAMP-responsive element binding. Of note, the ligation of CXCR4 by stromal cell-derived factor-1alpha but not the engagement of CD4 by monoclonal antibody stimulates the PKA activity and induces a long-lasting hyporesponsivity state in naive CD4+ lymphocytes. The pretreatment of lymphocytes with H89, a cell-permeable PKA inhibitor, prevents the induction of anergy. These findings reveal a novel mechanism by which HIVenv may modulate the processes of clonal expansion, homeostatic proliferation, and terminal differentiation of the naive T lymphocyte subset.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/imunologia , Sulfonamidas , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Anergia Clonal , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Células Dendríticas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Isoquinolinas/farmacologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Monócitos/metabolismo
20.
J Leukoc Biol ; 76(3): 634-40, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15197238

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal, acquired hematopoietic disorder characterized by a phosphatidylinositol (PI) glycan-A gene mutation, which impairs the synthesis of the glycosyl-PI (GPI) anchor, thus causing the absence of all GPI-linked proteins on the membrane of the clonal-defective cells. The presence of a consistent GPI-defective monocyte compartment is a common feature in PNH patients. To investigate the functional behavior of this population, we analyzed its in vitro differentiation ability toward functional dendritic cells (DCs). Our data indicate that GPI-defective monocytes from PNH patients are unable to undergo full DC differentiation in vitro after granulocyte macrophage-colony stimulating factor and recombinant interleukin (IL)-4 treatment. In this context, the GPI-defective DC population shows mannose receptor expression, high levels of the CD86 molecule, and impaired CD1a up-regulation. The analysis of lipopolysaccharide and CD40-dependent, functional pathways in these DCs revealed a strong decrease in tumor necrosis factor alpha and IL-12 production. Finally, GPI-defective DCs showed a severe impairment in delivering accessory signals for T cell receptor-dependent T cell proliferation.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Glicosilfosfatidilinositóis/deficiência , Hemoglobinúria Paroxística/sangue , Hemoglobinúria Paroxística/imunologia , Monócitos/imunologia , Adulto , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos CD1/imunologia , Antígenos CD1/metabolismo , Antígeno B7-2 , Antígenos CD40/imunologia , Diferenciação Celular/genética , Divisão Celular/imunologia , Células Dendríticas/citologia , Feminino , Glicosilfosfatidilinositóis/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Hemoglobinúria Paroxística/genética , Humanos , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-4/farmacologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Monócitos/citologia , Mutação/genética , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA