RESUMO
Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.
Assuntos
Proteína 7 com Repetições F-Box-WD , Transtornos do Neurodesenvolvimento , Ubiquitinação , Proteína 7 com Repetições F-Box-WD/química , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Transtornos do Neurodesenvolvimento/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Frameworks have been developed to help conceptualize clinical genetic counseling (GC), and observational studies have helped understand the process and content of GC sessions. However, additional research is needed to identify GC skills (behaviors or strategies) that practicing genetic counselors report consciously using to meet certain GC goals and determine what common terminology, if any, is being used to describe the various skills. Nineteen practicing genetic counselors in prenatal, pediatric, or cancer specialties were interviewed to elicit how they achieve session goals. Interview recordings were transcribed, coded thematically, and categorized using process categories from the communication strategy domain of the Framework for Outcomes in Clinical Communication Services (FOCUS). Reported skills largely fit within FOCUS, though findings prompted minor modifications of several FOCUS process categories and consolidation of the categories from 13 into 10. Although genetic counselor respondents reported a broad range of strategies and behaviors, they rarely had terms for skills they described. Results reveal concrete examples of GC skills, provide evidence for refinement of FOCUS, and highlight the need for establishing common terminology to describe these skills.
Assuntos
Conselheiros , Criança , Comunicação , Aconselhamento , Conselheiros/psicologia , Feminino , Aconselhamento Genético/psicologia , Humanos , Gravidez , AutorrelatoRESUMO
Rare individuals with 20p11.2 proximal deletions have been previously reported, with a variable phenotype that includes heterotaxy, biliary atresia, midline brain defects associated with panhypopituitarism, intellectual disability, scoliosis, and seizures. Deletions have ranged in size from 277 kb to 11.96 Mb. We describe a newborn with a de novo 2.7 Mb deletion of 20p11.22p11.21 that partially overlaps previously reported deletions and encompasses FOXA2. Her clinical findings further expand the 20p11.2 deletion phenotype to include severe midline cranial and intracranial defects such as aqueductal stenosis with hydrocephalus, mesencephalosynapsis with diencephalic-mesencephalic junction dysplasia, and pyriform aperture stenosis. We also report one individual with a missense variant in FOXA2 who had abnormal glucose homeostasis, panhypopituitarism, and endodermal organ dysfunction. Together, these findings support the critical role of FOXA2 in panhypopituitarism and midline defects.
Assuntos
Encéfalo/anormalidades , Constrição Patológica/genética , Fator 3-beta Nuclear de Hepatócito/genética , Hipopituitarismo/genética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Deleção Cromossômica , Cromossomos Humanos Par 20/genética , Constrição Patológica/diagnóstico por imagem , Constrição Patológica/fisiopatologia , Predisposição Genética para Doença , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Hidrocefalia/fisiopatologia , Hipopituitarismo/diagnóstico por imagem , Hipopituitarismo/fisiopatologia , Recém-Nascido , Mutação de Sentido Incorreto/genética , Fenótipo , Córtex Piriforme/diagnóstico por imagem , Córtex Piriforme/fisiopatologiaRESUMO
Autism spectrum disorder (ASD) is a genetically heterogeneous group of disorders characterized by impairments in social communication and restricted interests. Though some patients with ASD have an identifiable genetic cause, the cause of most ASD remains elusive. Many ASD susceptibility loci have been identified through clinical studies. We report two patients with syndromic ASD and persistent gastrointestinal issues who carry de novo deletions involving the CMIP gene detected by genome-wide SNP microarray and fluorescence in situ hybridization (FISH) analysis. Patient 1 has a 517 kb deletion within 16q23.2q23.3 including the entire CMIP gene. Patient 2 has a 1.59 Mb deletion within 16q23.2q23.3 that includes partial deletion of CMIP in addition to 12 other genes, none of which have a known connection to ASD or other clinical phenotypes. The deletion of CMIP is rare in general population and was not found among a reference cohort of approximately 12,000 patients studied in our laboratory who underwent SNP array analysis for various indications. A 280 kb de novo deletion containing the first 3 exons of CMIP was reported in one patient who also demonstrated ASD and developmental delay. CMIP has previously been identified as a susceptibility locus for specific language impairment (SLI). It is notable that both patients in this study had significant gastrointestinal issues requiring enteral feedings, which is unusual for patients with ASD, in addition to unusually elevated birth length, further supporting a shared causative gene. These findings suggest that CMIP haploinsufficiency is the likely cause of syndromic ASD in our patients.