Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Environ Sci (China) ; 129: 240-257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804239

RESUMO

Plants have to cope with several abiotic stresses, including salinity and heavy metals (HMs). Under these stresses, several extracts have been used as effective natural biostimulants, however, the use of Spirulina platensis (SP) extract (SPE) remains elusive. The effects of SPE were evaluated as soil addition (SA) and/or foliar spraying (FS) on antioxidant defenses and HMs content of common bean grown in saline soil contaminated with HMs. Individual (40 or 80 mg SPE/hill added as SA or 20 or 40 mg SPE/plant added as FS) or integrative (SA+FS) applications of SPE showed significant improvements in the following order: SA-80+FS-40 > SA-80+FS-20 > SA-40+FS-40 > SA-40+FS-20 > SA-80 > SA-40 > FS-40 > FS-20 > control. Therefore, the integrative SA+FS with 40 mg SP/plant was the most effective treatment in increasing plant growth and production, overcoming stress effects and minimizing contamination of the edible part. It significantly increased plant growth (74%-185%) and yield (107%-227%) by enhancing net photosynthetic rate (78.5%), stomatal conductance (104%), transpiration rate (124%), and contents of carotenoids (60.0%), chlorophylls (49%-51%), and NPK (271%-366%). These results were concurrent with the marked reductions in malondialdehyde (61.6%), hydrogen peroxide (42.2%), nickel (91%-94%), lead (80%-9%), and cadmium (74%-91%) contents due to the improved contents of glutathione (87.1%), ascorbate (37.0%), and α-tocopherol (77.2%), and the activities of catalase (18.1%), ascorbate peroxidase (18.3%), superoxide dismutase (192%), and glutathione reductase (52.2%) as reinforcing mechanisms. Therefore, this most effective treatment is recommended to mitigate the stress effects of salinity and HMs on common bean production while minimizing HMs in the edible part.


Assuntos
Metais Pesados , Phaseolus , Metais Pesados/farmacologia , Antioxidantes , Solo , Extratos Vegetais/farmacologia
2.
Ecotoxicol Environ Saf ; 198: 110685, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387845

RESUMO

Microorganism technologies can provide a potential alternative to traditional methods of removing heavy metals to conserve agricultural soils. This study aimed to identify and characterize heavy metals-resistant bacteria (HM-RB) isolated from industry-affected soil and their desired impact as bioremediators of heavy metals-stressed spinach plants. Three of 135 isolates were selected based on a high level of resistance to heavy metals. Based on morphological and biochemical characteristics, the selected isolates were identified as Bacillus subtilis subsp. spizizenii DSM 15029 T DSM (MA3), Paenibacillus jamilae DSM 13815 T DSM (LA22), or Pseudomonas aeruginosa DSM 1117 DSM (SN36). Experiments were implemented to investigate the three isolated HM-RB ability on improving attributes of growth, physio-biochemistry, and components of the antioxidant defense system of spinach plant exposed to the stress of cadmium (Cd2+; 2 mM), lead (Pb2+; 2 mM) or 2 mM Cd2++2 mM Pb2+. Compared to control, Cd2+ or Pb2+ stress markedly lowered plant fresh and dry weights, leaf contents of chlorophylls and carotenoids, rates of transpiration (Tr), net photosynthesis (Pn) and stomatal conductance (gs), relative water content (RWC), and membrane stability index (MSI). In contrast, contents of α.tochopherol (α.TOC), ascorbic acid (AsA), glutathione (GSH), proline, soluble sugars, Cd2+, and Pb2+, as well as activities of enzymatic and non-enzymatic antioxidants were markedly elevated. The application of HM-RB promoted the tolerance to heavy metal stress in spinach plants by improving Tr, Pn, gs, RWC, and MSI, while activities of enzymatic and non-enzymatic antioxidants were suppressed. These results reflected positively in promoting plant growth under heavy metal stress. Therefore, the application of HM-RB as potential bioremediators may be a promising strategy for promoting plant growth and productivity under heavy metal stress.


Assuntos
Biodegradação Ambiental , Metais Pesados/análise , Poluentes do Solo/toxicidade , Spinacia oleracea/fisiologia , Agricultura , Antioxidantes , Ácido Ascórbico , Bacillus/fisiologia , Cádmio , Clorofila , Glutationa , Paenibacillus/fisiologia , Fotossíntese , Folhas de Planta/química , Solo , Poluentes do Solo/análise , Spinacia oleracea/microbiologia
3.
Ecotoxicol Environ Saf ; 182: 109378, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31254855

RESUMO

Recently, the strategy of seed soaking has been successfully applied using extracts from different plant parts for healthy growth of plant under different environmental stresses. Compared to antioxidants like ascorbic acid (AsA) and glutathione (GSH) or polyamines (PAs) like spermine (SPM), spermidine (SPD), and putrescine (PUT), the effects of seed soaking using maize grain extract (MGE) on the biomass, productivity, phytohormones, and antioxidant defense system and its different components were examined with Cd2+-stressed wheat plants. In a preliminary study, seed soaking using AsA + GSH or PUT + SPD + SPM was more effective in increasing shoot fresh and dry weights, SPAD chlorophyll, and grain yield, and reducing malondialdehyde (MDA) content than individuals. In addition, MGE at 2% was more efficient than other concentrations. Therefore, they were selected for the main study. In the main study, compared to the control, seed soaking in AsA + GSH, PUT + SPD + SPM or MGE had positive effects on plant growth, yield, photosynthetic efficiency, contents and redox states of AsA and GSH, contents of PAs and plant hormones to varying degrees. Proline content and its metabolism enzymes activity, contents of soluble protein, N-compounds, soluble sugars, and α-tocopherol (α-TOC), and activities of antioxidant enzymes were not affected. However, contents of MDA and hydrogen peroxide (H2O2) were significantly reduced under normal conditions. Under Cd2+ stress (1.2 mM), along with the detrimental increases in the contents of MDA, H2O2 and Cd2+, contents of N-compounds, soluble sugars, proline content and its metabolism enzymes activities, AsA and GSH and their redox states, and polyamines, and activities of antioxidant enzymes were increased. In contrast, plant growth and yield, photosynthetic efficiency, soluble protein, and plant hormones were significantly reduced compared to the control. However, all of these attributes were significantly improved to varying degrees along with reduced contents of Cd2+, MDA, and H2O2 by seed soaking in AsA + GSH, PUT + SPD + SPM or MGE compared to the Cd2+-stressed control. Compared to AsA + GSH or PUT + SPD + SPM, seed soaking in MGE at 2% conferred the best results. Therefore, it is recommended to soak wheat seeds using MGE to improve plant growth and productivity by restricting the inhibitory influences of oxidative stress induced by Cd2+ stress.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Extratos Vegetais/farmacologia , Poliaminas/farmacologia , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Zea mays/química , Antioxidantes/metabolismo , Clorofila/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Poliaminas/metabolismo , Triticum/metabolismo
4.
Ecotoxicol Environ Saf ; 169: 50-60, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30419506

RESUMO

Green approaches for improving plant performance using natural supplementations are highly seeking. Following a preliminary study conducted on contaminated saline (EC = 7.75 dS m-1) and normal (EC = 1.4 dS m-1) soils, two main field trials were conducted to study the potential effects of licorice root (LRE; 0.5%) and moringa seed (MSE; 0.5%) extracts, supplemented to soil through irrigation water (SA) and/or as foliar spray (FS), on performance, physio-biochemical components, antioxidant defense system, and contaminants contents of Capsicum annuum plants grown on heavy metals-contaminated saline soil. Both extracts were applied in single treatments such as LRE-SA, MSE-SA, LRE-FS, and MSE-FS or in integrations like LRE-SA+LRE-FS, LRE-SA+MSE-FS, MSE-SA+LRE-FS, and MSE-SA+MSE-FS. The preliminary study results showed significant reductions in plant performance (growth and yield), chlorophylls content and significant increase in Cd content due to heavy metals and salt stress. However, LRE and MSE applied singly or in combinations positively modified these parameters compared to the control (SA and FS were applied with tap water). On the other hand, these parameters were not responded to LRE and/or MSE applications on the normal soil. The main studies results showed that all single or integrative treatments significantly increased plant growth and yield, leaf contents of leaf photosynthetic pigments, free proline, total soluble sugars, N, P, and K+, ratio of K+/Na+, and activities of CAT, POX, APX, SOD, and GR. In contrast, contaminants; Na+, Cd, Cu, Pb and Ni contents in plant leaves and fruits were significantly reduced on heavy metals-contaminated saline soil compared to the control. Additionally, all integrative treatments significantly exceeded all single treatments in this concern. The integrative MSE-SA+LRE-FS was the best treatment that is recommended to be used to maximize pepper plant performances and minimize plant contaminant contents on contaminated saline soils.


Assuntos
Capsicum/efeitos dos fármacos , Capsicum/crescimento & desenvolvimento , Glycyrrhiza , Metais Pesados/toxicidade , Moringa , Poluentes do Solo/toxicidade , Antioxidantes/análise , Capsicum/química , Clorofila/análise , Frutas/crescimento & desenvolvimento , Metais Pesados/análise , Extratos Vegetais/farmacologia , Estresse Salino , Poluentes do Solo/análise
5.
Ecotoxicol Environ Saf ; 154: 171-179, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29471279

RESUMO

During its life cycle, plant has to cope with a number of abiotic stresses including cadmium stress. Cadmium (Cd) is highly toxic to plant and greatly influences its growth and entire metabolism. Antioxidants have to enable plant to beat such stresses. Therefore, effects of ascorbate (AsA), proline (Pro) and glutathione (GSH) applied, as seed soaking solutions, singly or in a sequence on cucumber transplant growth, physio-biochemical attributes and antioxidant defense system activity were investigated under 2 mM Cd stress. Adding Cd to transplants in irrigation water reduced photosynthetic efficiency, and nutrient (K+ and Ca2+) contents, while increased the activity of defense systems (non-enzymatic and enzymatic antioxidants) and Cd2+ contents in roots and leaves. Exogenous AsA, Pro and GSH applied singly or in a sequence improved transplant growth (e.g., shoot length, leaf area, shoot fresh weight and shoot dry weight), photosynthetic efficiency (i.e., SPAD chlorophyll, Fv/Fm and PI), transplant health (i.e., increased leaf MSI and RWC, and decreased root and leaf Cd2+ contents), antioxidant defense systems activity (enzymatic; superoxide dismutase, catalase, glutathione reductase and ascorbate peroxidase, and non-enzymatic; Pro, AsA and GSH antioxidants) and nutrient (K+ and Ca2+) contents. These positive results were obtained under irrigation with or without Cd, AsA. Sequenced AsA-Pro-GSH was the best treatment of which this study recommends to use, followed by GSH treatment, for growing cucumber transplants under Cd stress.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Cádmio/toxicidade , Cucumis sativus/efeitos dos fármacos , Glutationa/farmacologia , Prolina/farmacologia , Ascorbato Peroxidases/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Glutationa Redutase/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo
6.
Ecotoxicol Environ Saf ; 154: 187-196, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29475124

RESUMO

In the crust of earth, silicon (Si) is one of the two major elements. For plant growth and development, importance of Si remains controversial due to the widely differences in ability of plants to take up this element. In this paper, pot experiments were done to study Si roles in improving salt, drought or cadmium (Cd) stress tolerance in wheat. Up to full emergence, all pots were watered at 100% field capacity (FC) every other day with nutrient solution without any treatments. Fifteen days after sowing, pots were divided into four plots, each with 40 pots for no stress (control) and three stress treatments; drought (50% FC), salinity (200 mM NaCl) and cadmium (2 mM Cd). For all plots, Si was applied at four levels (0, 2, 4 and 6 mM). Under no stress condition, Si applications increased Si content and improved growth as a result of reduced electrolyte leakage (EL), malondialdehyde (MDA) and Na+ contents. Under stress conditions, Si supplementation conferred higher growth, gas exchange, tissue water and membranes stabilities, and K+ content, and had limited MDA and Na+ contents and EL compared to those obtained without Si. Compared to those without Si, enzyme (e.g., superoxide dismutase, catalase and peroxidase) activity was improved by Si applications, which were linked with elevated antioxidants and osmoprotectants (e.g., free proline, soluble sugars, ascorbic acid and glutathione) contents, might providing antioxidant defense against abiotic stress in wheat. The level of 4 mM Si was most effective for mitigating the salt and drought stress conditions, while 6 mM Si level was most influentially for alleviating the Cd stress condition. These results suggest that Si is beneficial in remarkably affecting physiological phenomena and improving wheat growth under abiotic stress.


Assuntos
Silício/fisiologia , Estresse Fisiológico , Triticum/fisiologia , Antioxidantes/metabolismo , Cádmio/toxicidade , Catalase/metabolismo , Secas , Malondialdeído/análise , Peroxidase/metabolismo , Salinidade , Superóxido Dismutase/metabolismo , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
7.
Ecotoxicol Environ Saf ; 133: 252-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27474846

RESUMO

The role of antioxidants exogenously-applied individually or in sequences in the improvement of salt tolerance in maize seedlings, and their effects on changes in the activities of endogenous enzymatic and non-enzymatic antioxidants, and the concentrations of phytohormones in seedlings grown under 100mM NaCl stress were assessed. The efficiency of maize seedlings to tolerate salt stress in terms of growth was noticed to varying degrees with antioxidants applied singly or in sequences. The healthy growth of salt-stressed seedlings was correlated with the improvements in the activities of enzymatic and non-enzymatic antioxidants, the concentrations of osmoprotectants and phytohormones, and tissue health in terms of relative water content and membrane stability index. Results show that, seed soaking in AsA, GSH and proline applied in sequences (i.e., AsA0.50-Pro0.50-GSH0.50 or GSH0.50-Pro0.50-AsA0.50) was better than their applications individually. In addition, the sequenced application of AsA0.50-Pro0.50-GSH0.50 as integrated treatment was better, generating maize seedlings more tolerant to salinity than those generated from the sequenced application of GSH0.50-Pro0.50-AsA0.50. Therefore, we recommend using the sequenced application of AsA0.50-Pro0.50-GSH0.50 as integrated soaking treatment for maize to grow under salt stress.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Prolina/metabolismo , Tolerância ao Sal , Plântula/fisiologia , Zea mays/fisiologia , Salinidade , Plântula/crescimento & desenvolvimento , Sementes , Cloreto de Sódio
8.
Ecotoxicol Environ Saf ; 119: 178-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26004358

RESUMO

Cadmium (Cd) stress causes several negative physiological, biochemical and structural changes due to the oxidative stress caused through the generation of ROS, leading to a reduction in plant growth. To look for an effective method to increase Cd tolerance of wheat seedlings, the effect of presoaking Triticum aestivum L. seeds in spermidine (Spd; 2mM) or spermine (Spm; 2mM) on seedling growth, physiological attributes and antioxidant defence system under 1mM Cd stress were investigated. Spm or Spd alleviated the adverse effects of Cd stress to convergent degrees. Presoaking wheat seeds in either polyamine increased the seedling growth and the activities of antioxidant enzymes compared to the control, but other attributes were slightly affected. Under Cd stress, presoaking seeds in either polyamine significantly increased seedling growth, membrane stability index, relative water content, concentrations of protein, starch, ascorbic acid, total glutathione, Spm and Spd, and the activities of superoxide dismutase and catalase. In contrast, electrolyte leakage, concentrations of proline, total soluble sugars, malondialdehyde, hydrogen peroxide and Cd(2+), and the activities of peroxidase and ascorbate peroxidase were reduced compared to the control. These results are important as the potential of Spd or Spm to alleviate the harmful effects of Cd stress offer an opportunity to increase the resistance of wheat seedlings to growth under Cd stress conditions.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Plântula/efeitos dos fármacos , Espermidina/farmacologia , Espermina/farmacologia , Triticum/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/metabolismo , Folhas de Planta/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Superóxido Dismutase/metabolismo , Triticum/metabolismo
9.
Plant Physiol Biochem ; 215: 109068, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216160

RESUMO

Although much interest has been focused on the role of selenium (Se) in plant nutrition over the last 20 years, the influences of organic selenium (selenomethionine; Se-Met) and inorganic selenium (potassium selenite; Se-K) on the growth and physiological characters of cadmium (Cd)-stressed Glycine max L.) seedlings have not yet been studied. In this study, the impacts of Se-Met or Se-K on the growth, water physiological parameters (gaseous exchange and leaf water content), photosynthetic and antioxidant capacities, and hormonal balance of G. max seedlings grown under 1.0 mM Cd stress were studied. The results showed that 30 µM Se-K up-regulates water physiological parameters, photosynthetic indices, antioxidant systems, enzymatic gene expression, total antioxidant activity (TAA), and hormonal balance. In addition, it down-regulates levels of reactive oxygen species (ROS; superoxide free radicals and hydrogen peroxide), oxidative damage (malondialdehyde content as an indicator of lipid peroxidation and electrolyte leakage), Cd translocation factor, and Cd content of Cd-stressed G. max seedlings. These positive findings were in favor of seedling growth and development under Cd stress. However, 50 µM Se-Met was more efficient than 30 µM Se-K in promoting the above-mentioned parameters of Cd-stressed G. max seedlings. From the current results, we conclude Se-Met could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 1.0 mM. However, further work is warranted to better understand the precise mechanisms of Se-Met action under Cd stress conditions.


Assuntos
Antioxidantes , Cádmio , Glycine max , Selênio , Cádmio/toxicidade , Cádmio/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Antioxidantes/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Regulação para Baixo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Selenometionina/metabolismo , Selenometionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo
10.
Sci Rep ; 13(1): 13935, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626070

RESUMO

The aromatic fennel plant (Foeniculum vulgare Miller) is cultivated worldwide due to its high nutritional and medicinal values. The aim of the current study was to determine the effect of the application of bio-organic fertilization (BOF), farmyard manure (FM) or poultry manure (PM), either individually or combined with Lactobacillus plantarum (LP) and/or Lactococcus lactis (LL) on the yield, chemical composition, and antioxidative and antimicrobial activities of fennel seed essential oil (FSEO). In general, PM + LP + LL and FM + LP + LL showed the best results compared to any of the applications of BOF. Among the seventeen identified FSEO components, trans-anethole (78.90 and 91.4%), fenchone (3.35 and 10.10%), limonene (2.94 and 8.62%), and estragole (0.50 and 4.29%) were highly abundant in PM + LP + LL and FM + LP + LL, respectively. In addition, PM + LP + LL and FM + LP + LL exhibited the lowest half-maximal inhibitory concentration (IC50) values of 8.11 and 9.01 µg mL-1, respectively, compared to L-ascorbic acid (IC50 = 35.90 µg mL-1). We also observed a significant (P > 0.05) difference in the free radical scavenging activity of FSEO in the triple treatments. The in vitro study using FSEO obtained from PM + LP + LL or FM + LP + LL showed the largest inhibition zones against all tested Gram positive and Gram negative bacterial strains as well as pathogenic fungi. This suggests that the triple application has suppressive effects against a wide range of foodborne bacterial and fungal pathogens. This study provides the first in-depth analysis of Egyptian fennel seeds processed utilizing BOF treatments, yielding high-quality FSEO that could be used in industrial applications.


Assuntos
Anti-Infecciosos , Foeniculum , Lactobacillus plantarum , Lactococcus lactis , Óleos Voláteis , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Fertilizantes , Esterco , Sementes , Anti-Infecciosos/farmacologia
11.
Plants (Basel) ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836147

RESUMO

As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.

12.
Plants (Basel) ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836175

RESUMO

Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse impacts of N toxicity on Phaseolus vulgaris growth, yield quality, physio-chemical properties, and defense systems. For this purpose, the soil was fertilized with 100, 125, and 150% of the recommended N dose (RND), and the plants were sprayed with 1.5% DHS. Trials were arranged in a two-factor split-plot design (N levels occupied main plots × DH- occupied subplots). Excess N (150% RND) caused a significant decline in plant growth, yield quality, photosynthesis, and antioxidants, while significantly increasing oxidants and oxidative damage [hydrogen peroxide (H2O2), superoxide (O2•-), nitrate, electrolyte leakage (EL), and malondialdehyde (MDA) levels]. However, DHS significantly improved antioxidant activities (glutathione and nitrate reductases, catalase, ascorbate peroxidase, superoxide dismutase, proline, ascorbate, α-tocopherol, and glutathione) and osmoregulatory levels (soluble protein, glycine betaine, and soluble sugars). Enzyme gene expressions showed the same trend as enzyme activities. Additionally, H2O2, O2•-, EL, MDA, and nitrate levels were significantly declined, reflecting enhanced growth, yield, fruit quality, and photosynthetic efficiency. The results demonstrate that DHS can be used as an eco-friendly approach to overcome the harmful impacts of N toxicity on P. vulgaris plants.

13.
Front Plant Sci ; 14: 1144319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123831

RESUMO

Introduction: Osmoprotectant supplementation can be used as a useful approach to enhance plant stress tolerance. However, the effect of silymarin and clove fruit extract (CFE) on wheat plants grown under cadmium (Cd) stress has not been studied. Methods: Wheat seeds were planted in plastic pots filled with ions-free sand. A ½-strength Hoagland's nutrient solution was used for irrigation. Pots were treated with eight treatments thirteen days after sowing: 1) Control, 2) 0.5 mM silymarin foliar application [silymarin], 3) 2% CFE foliar application [CFE], 4) CFE enriched with silymarin (0.24 g silymarin L-1 of CFE) [CFE-silymarin], 5) Watering wheat seedlings with a nutritious solution of 2 mM Cd [Cd]. 6) Cadmium + silymarin, 7) Cadmium + CFE, and 8) Cadmium + CFE-silymarin. The experimental design was a completely randomized design with nine replicates. Results and discussion: The Cd stress decreased grain yield, shoot dry weight, leaf area, carotenoids, chlorophylls, stomatal conductance, net photosynthetic rate, transpiration rate, membrane stability index, nitrogen, phosphorus, and potassium content by 66.9, 60.6, 56.7, 23.8, 33.5, 48.1, 41.2, 48.7, 42.5, 24.1, 39.9, and 24.1%, respectively. On the other hand, Cd has an Application of CFE, silymarin, or CEF-silymarin for wheat plants grown under Cd stress, significantly improved all investigated biochemical, morphological, and physiological variables and enhanced the antioxidant enzyme activities. Applying CFE and/or silymarin enhanced plant tolerance to Cd stress more efficiently. Our findings suggest using CFE-silymarin as a meaningful biostimulator for wheat plants to increase wheat plants' tolerance to Cd stress via enhancing various metabolic and physiological processes.

14.
PeerJ ; 11: e15343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366423

RESUMO

Globally, salinity and drought are severe abiotic stresses that presently threaten vegetable production. This study investigates the potential exogenously-applied glutathione (GSH) to relieve water deficits on Phaseolus vulgaris plants cultivated in saline soil conditions (6.22 dS m-1) by evaluating agronomic, stability index of membrane, water satatus, osmolytes, and antioxidant capacity responses. During two open field growing seasons (2017 and 2018), foliar spraying of glutathione (GSH) at 0.5 (GSH1) or 1.0 (GSH1) mM and three irrigation rates (I100 = 100%, I80 = 80% and I60 = 60% of the crop evapotranspiration) were applied to common bean plants. Water deficits significantly decreased common bean growth, green pods yield, integrity of the membranes, plant water status, SPAD chlorophyll index, and photosynthetic capacity (Fv/Fm, PI), while not improving the irrigation use efficiency (IUE) compared to full irrigation. Foliar-applied GSH markedly lessened drought-induced damages to bean plants, by enhancing the above variables. The integrative I80 + GSH1 or GSH2 and I60 + GSH1 or GSH2 elevated the IUE and exceeded the full irrigation without GSH application (I100) treatment by 38% and 37%, and 33% and 28%, respectively. Drought stress increased proline and total soluble sugars content while decreased the total free amino acids content. However, GSH-supplemented drought-stressed plants mediated further increases in all analyzed osmolytes contents. Exogenous GSH enhanced the common bean antioxidative machinery, being promoted the glutathione and ascorbic acid content as well as up-regulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase. These findings demonstrate the efficacy of exogenous GSH in alleviating water deficit in bean plants cultivated in salty soil.


Assuntos
Antioxidantes , Phaseolus , Antioxidantes/metabolismo , Phaseolus/metabolismo , Água/metabolismo , Glutationa/metabolismo , Solo
15.
Sci Rep ; 13(1): 18315, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880216

RESUMO

Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/farmacologia , Silício/farmacologia , Prolina/farmacologia , Estresse Salino , Glutationa , Água , Solo/química
16.
Plants (Basel) ; 11(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448732

RESUMO

There is an urgent need for innovative strategies to raise the performance of environmentally stressed plants. The seeds of single-cross yellow Zea mays (L.) hybrid Giza-168 were soaked in Cis-(c-Z-Ck) or trans-zeatin-type cytokinin (t-Z-Ck) solutions at a concentration of 50 or 40 µM, respectively. Salinity stress was imposed at 0, 75 or 150 mM NaCl in the Hoagland nutrient solution (full strength) used for irrigation. The total carotenoids content was negatively affected by only 150 mM NaCl, while both 75 and 150 mM NaCl negatively affected the growth and yield components, relative water content, membrane stability index, photochemical activity, gas exchange, K+ and chlorophyll contents, K+/Na+ ratio, and photosynthetic efficiency. However, all of these traits were significantly improved by c-Z-Ck pretreatment and further enhanced by t-Z-Ck pretreatment compared with the corresponding controls. Furthermore, the contents of proline, soluble sugars, ascorbate, and glutathione, as well as enzymatic antioxidant activities, were significantly elevated by both salt stress concentrations and increased more by both biostimulators compared to the control. Compared to c-Z-Ck, t-Z-Ck was superior in mitigating the harmful effects of the high H2O2 levels caused by salt stress on the levels of malondialdehyde and ion leakage compared to the control. Under normal or stress conditions, t-Z-Ck pretreatment was better than c-Z-Ck pretreatment, while both positively affected maize hormonal contents. As a result, t-Z-Ck is recommended to enhance the growth and productivity of maize plants by suppressing the effects of oxidative stress caused by saline water irrigation.

17.
Plants (Basel) ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432798

RESUMO

Silymarin (Sm) and dopamine (DA) act synergistically as potential antioxidants, mediating many physiological and biochemical processes. As a first report, we investigated the synergistic effect of Sm and DA in mitigating cadmium stress in Phaseolus vulgaris plants. Three experiments were conducted simultaneously using 40 cm diameter pots to elucidate how Sm and DA affect cadmium tolerance traits at morphological, physiological, and biochemical levels. Cadmium stress triggered a marked reduction in growth, productivity, and physio-biochemical characteristics of common bean plants compared to unstressed plants. Seed priming (SP) and foliar spraying (FS) with silymarin (Sm) or dopamine (DA) ((DA (SP) + Sm (FS) and Sm (SP) + DA (FS)) ameliorated the damaging effects of cadmium stress. Sm seed priming + DA foliar spraying (Sm (SP) + DA (FS)) was more efficient. The treated stressed common bean plants showed greater tolerance to cadmium stress by diminishing oxidative stress biomarkers (i.e., O2•-, H2O2, and MDA) levels through enhanced enzymatic (SOD, CAT, POD, APX) and non-enzymatic (ascorbic acid, glutathione, α-tocopherol, choline, phenolics, flavonoids) antioxidant activities and osmoprotectants (proline, glycine betaine, and soluble sugars) contents, as well as through improved photosynthetic efficiency (total chlorophyll and carotenoids contents, photochemical activity, and efficiencies of carboxylation (iCE) and PSII (Fv/Fm)), polyamines (Put, Spd, and Spm), and polyamine metabolic enzymes (ADC and ODC) accumulation. These findings signify that Sm and DA have remarkable anti-stress effects, which can help regulate plant self-defense systems, reflecting satisfactory plant growth and productivity. Thus, realizing the synergistic effect of Sm and DA in cadmium tolerance confers potential new capabilities for these compounds to function in sustainable agriculture.

18.
Saudi J Biol Sci ; 29(4): 2148-2162, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531163

RESUMO

Fifteen alfalfa populations were tested for resistance to the seedling damping-off disease sourced by Rhizoctonia solani, Fusarium solani, and Macrophomina phaseolina. In a laboratory experiment, saponin treatment significantly diminished the mycelial growth of the causal fungi of alfalfa damping-off disease. Roots of the fifteen alfalfa populations varied in saponin and lignin content. Selection for the considerably resistant plants leads to the best growth performance, desirable yield, and high nutritive values such as crude protein (CP), crude fier (CF), nitrogen free extract (NFE), ash, and ether extract (EE) contents. For the PCR reaction, 10 SSR pairs of the JESPR series primers and the cDNA-SCoT technique with seven primers were used. SSR and SCoT revealed some unique markers that could be linked to resistance to damping-off disease in alfalfa that appeared in the considerably resistant alfalfa population (the promised pop.). SSR and SCoT markers can be an excellent molecular method for judging genetic diversity and germplasm classification in tetraploid alfalfa. We recommend breeding for saponin concentration in the alfalfa plant may affect resistance to some diseases like root rot and damping-off because saponin might improve plant growth, yield, and nutritional values.

19.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616192

RESUMO

Bee-honey solution (BHS) is considered a plant growth multi-biostimulator because it is rich in osmoprotectants, antioxidants, vitamins, and mineral nutrients that can promote drought stress (DtS) resistance in common bean plants. As a novel strategy, BHS has been used in a few studies, which shows that the application of BHS can overcome the stress effects on plant productivity and can contribute significantly to bridging the gap between agricultural production and the steady increase in population under climate changes. Under sufficient watering (SW (100% of crop evapotranspiration; ETc) and DtS (60% of ETc)), the enhancing impacts of foliar application with BHS (0%, 0.5%, 1.0%, and 1.5%) on growth, productivity, yield quality, physiological-biochemical indices, antioxidative defense ingredients, and nutrient status were examined in common bean plants (cultivar Bronco). DtS considerably decreased growth and yield traits, green pod quality, and water use efficiency (WUE); however, application of BHS at all concentrations significantly increased all of these parameters under normal or DtS conditions. Membrane stability index, relative water content, nutrient contents, SPAD (chlorophyll content), and PSII efficiency (Fv/Fm, photochemical activity, and performance index) were markedly reduced under DtS; however, they increased significantly under normal or DtS conditions by foliar spraying of BHS at all concentrations. The negative impacts of DtS were due to increased oxidants [hydrogen peroxide (H2O2) and superoxide (O2•-)], electrolyte leakage (EL), and malondialdehyde (MDA). As a result, the activity of the antioxidant system (ascorbate peroxidase, glutathione reductase, catalase, superoxide dismutase, α-tocopherol, glutathione, and ascorbate) and levels of osmoprotectants (soluble protein, soluble sugars, glycine betaine, and proline) were increased. However, all BHS concentrations further increased osmoprotectant and antioxidant capacity, along with decreased MDA and EL under DtS. What is interesting in this study was that a BHS concentration of 1.0% gave the best results under SW, while a BHS concentration of 1.5% gave the best results under DtS. Therefore, a BHS concentration of 1.5% could be a viable strategy to mitigate the DtS impairment in common beans to achieve satisfactory growth, productivity, and green pod quality under DtS.

20.
Front Plant Sci ; 13: 947949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388534

RESUMO

The use of calcium carbonate-precipitating bacteria (CCPB) has become a well-established ground-improvement technique. However, the effect of the interaction of CCPB with nanoparticles (NPs) on plant performance is still meager. In this study, we aimed at evaluating the role of CCPB and/or silicon NPs (Si-NPs) on the growth, physio-biochemical traits, and antioxidative defense of wheat (Triticum aestivum L.) under semi-arid environmental conditions. A 2-year pot experiment was carried out to determine the improvement of the sandy soil inoculated with CCPB and the foliar application of Si-NPs on wheat plants. We tested the following treatments: spraying plants with 1.0 or 1.5 mM Si-NPs (control = 0 mM Si-NPs), soil inoculated with Bacillus lichenforms (MA16), Bacillus megaterium (MA27), or Bacillus subtilis (MA34), and the interaction of individual Bacillus species with Si-NPs. Our results showed that soil inoculation with any of the three isolated CCPB and/or foliar application of Si-NPs at the rates of 1.0 or 1.5 mM significantly improved (p ≤ 0.05) the physiological and biochemical attributes as well as the enzymatic antioxidant activities of wheat plants. Therefore, the combined treatments of CCPB + Si-NPs were more effective in enhancing physio-biochemical characteristics and enzymatic antioxidant activities than the individual treatments of CCPB or Si-NPs, thus achieving the best performance in the treatment of MA34 + 1.5 mM Si-NPs. Our results demonstrated that the co-application of CCPB and Si-NPs, particularly MA34 + 1.5 mM Si-NPs, considerably activated the antioxidant defense system to mitigate the adverse effects of oxidative stress, thus increasing tolerance and enhancing the production of wheat plants in sandy soils under semi-arid environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA