Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Metab ; 20: 28-37, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528280

RESUMO

BACKGROUND/OBJECTIVES: Although the prevalence of obesity and its associated metabolic disorders is increasing in both sexes, the clinical phenotype differs between men and women, highlighting the need for individual treatment options. Mitochondrial dysfunction in various tissues, including white adipose tissue (WAT), has been accepted as a key factor for obesity-associated comorbidities such as diabetes. Given higher expression of mitochondria-related genes in the WAT of women, we hypothesized that gender differences in the bioenergetic profile of white (pre-) adipocytes from obese (age- and BMI-matched) donors must exist. SUBJECTS/METHODS: Using Seahorse technology, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) of (pre-)adipocytes from male (n = 10) and female (n = 10) deeply-phenotyped obese donors under hypo-, normo- and hyperglycemic (0, 5 and 25 mM glucose) and insulin-stimulated conditions. Additionally, expression levels (mRNA/protein) of mitochondria-related genes (e.g. UQCRC2) and glycolytic enzymes (e.g. PKM2) were determined. RESULTS: Dissecting cellular OCR and ECAR into different functional modules revealed that preadipocytes from female donors show significantly higher mitochondrial to glycolytic activity (higher OCR/ECAR ratio, p = 0.036), which is supported by a higher ratio of UQCRC2 to PKM2 mRNA levels (p = 0.021). However, no major gender differences are detectable in in vitro differentiated adipocytes (e.g. OCR/ECAR, p = 0.248). Importantly, glucose and insulin suppress mitochondrial activity (i.e. ATP-linked respiration) significantly only in preadipocytes of female donors, reflecting their trends towards higher insulin sensitivity. CONCLUSIONS: Collectively, we show that preadipocytes, but not in vitro differentiated adipocytes, represent a model system to reveal gender differences with clinical importance for metabolic disease status. In particular preadipocytes of females maintain enhanced mitochondrial flexibility, as demonstrated by pronounced responses of ATP-linked respiration to glucose.


Assuntos
Adipócitos Brancos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Adulto , Proteínas de Transporte/metabolismo , Células Cultivadas , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Consumo de Oxigênio , Fatores Sexuais , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
2.
Mol Metab ; 6(10): 1226-1239, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031722

RESUMO

OBJECTIVE: Obesity-associated WAT inflammation is characterized by the accumulation and local activation of macrophages (MΦs), and recent data from mouse studies suggest that macrophages are modifiers of adipocyte energy metabolism and mitochondrial function. As mitochondrial dysfunction has been associated with obesity and the metabolic syndrome in humans, herein we aimed to delineate how human macrophages may affect energy metabolism of white adipocytes. METHODS: Human adipose tissue gene expression analysis for markers of macrophage activation and tissue inflammation (CD11c, CD40, CD163, CD206, CD80, MCP1, TNFα) in relationship to mitochondrial complex I (NDUFB8) and complex III (UQCRC2) was performed on subcutaneous WAT of 24 women (BMI 20-61 kg/m2). Guided by these results, the impact of secreted factors of LPS/IFNγ- and IL10/TGFß-activated human macrophages (THP1, primary blood-derived) on mitochondrial function in human subcutaneous white adipocytes (SGBS, primary) was determined by extracellular flux analysis (Seahorse technology) and gene/protein expression. RESULTS: Stepwise regression analysis of human WAT gene expression data revealed that a linear combination of CD40 and CD163 was the strongest predictor for mitochondrial complex I (NDUFB8) and complex III (UQCRC2) levels, independent of BMI. IL10/TGFß-activated MΦs displayed high CD163 and low CD40 expression and secreted factors that decreased UQCRC2 gene/protein expression and ATP-linked respiration in human white adipocytes. In contrast, LPS/IFNγ-activated MΦs showed high CD40 and low CD163 expression and secreted factors that enhanced adipocyte mitochondrial activity resulting in a total difference of 37% in ATP-linked respiration of white adipocytes (p = 0.0024) when comparing the effect of LPS/IFNγ- vs IL10/TGFß-activated MΦs. CONCLUSION: Our data demonstrate that macrophages modulate human adipocyte energy metabolism via an activation-dependent paracrine mechanism.


Assuntos
Tecido Adiposo Branco/metabolismo , Ativação de Macrófagos/fisiologia , Mitocôndrias/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/citologia , Adulto , Idoso , Antígenos CD/metabolismo , Citocinas/metabolismo , Metabolismo Energético , Feminino , Humanos , Macrófagos/metabolismo , Pessoa de Meia-Idade , Obesidade/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA