Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-14, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138934

RESUMO

Herbicide contamination in aquatic systems has become a global concern due to their long- term persistence, accumulation and health risks to humans. Paraquat, a widely used and cost-effective nonselective herbicide, is frequently applied in agricultural fields for pest control. Consequently, the removal of paraquat from contaminated water is crucial. This research presents a sustainable and environmentally benign method for paraquat removal from aqueous system by integrating wetland plants (Eichhornia crassipes) with biochar derived from melamine-modified palm kernel shells. The prepared biochar was characterized by using various analytical techniques. The effectiveness of biochar in enhancing phytoremediation was evaluated through a series of experiments, showing significant paraquat removal efficiencies of 99.7, 98.3, and 82.8% at different paraquat concentrations 50, 100, and 150 mg L-1, respectively. Additionally, present study examined the impact of biochar on the growth of E. crassipes, highlighting its potential to reduce the toxic effects of paraquat even present at higher concentrations. The paraquat removal mechanism was elucidated, focusing on the synergistic role of biochar adsorption and phytoremediation capability of E. crassipes. This innovative approach is an effective, feasible, sustainable and eco-friendly technique that can contribute to the development of advanced and affordable water remediation processes for widespread application.


The novelty of this study lies in the implementation of combined approach by phytoremediation with biochar modified with melamine. This study highlighted synergistic integration of two concurrent systems. The biochar generated from waste palm kernel shells played a pivotal role in facilitating the plants' survival and resilience against the paraquat toxicity, rather than succumbing to its deleterious effects. This research delineates a robust methodology for the elimination of emerging pollutants, offering researchers a platform to make pioneering advancements in this scientific field for sustainable future.

2.
J Environ Manage ; 353: 120179, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295641

RESUMO

Natural soil minerals often contain numerous impurities, resulting in comparatively lower catalytic activity. Tropical soils are viewed as poor from soil organic matter, cations, and anions, which are considered the main impurities in the soil that are restricted to utilizing natural minerals as a catalyst. In this regard, the dissolved iron and hematite crystals that presented naturally in tropical soil were evaluated to activate oxidants and degrade pyrene. The optimum results obtained in this study were 73 %, and the rate constant was 0.0553 h-1 under experimental conditions [pyrene] = 300 mg/50 g, pH = 7, T = 55 °C, airflow = 260 mL/min, [Persulfate (PS)] = 1.0 g/L, and humic acid (HA) ( % w/w) = 0.5 %. The soil characterization analysis after the remediation process showed an increase in moieties and cracks of the soil aggregate, and a decline in the iron and aluminium contents. The scavengers test revealed that both SO4•- and O2•- were responsible for the pyrene degradation, while HO• had a minor role in the degradation process. In addition, the monitoring of by-products, degradation pathways, and toxicity assessment were also investigated. This system is considered an efficient, green method, and could provide a step forward to develop low-cost soil remediation for full-scale implementation.


Assuntos
Ferro , Poluentes do Solo , Ferro/química , Solo/química , Poluentes do Solo/química , Minerais/química , Pirenos , Oxidantes , Oxirredução
3.
Environ Res ; 214(Pt 1): 113833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35839907

RESUMO

Pharmaceutical compounds have piqued the interest of researchers due to an increase in their demand, which increases the possibility of leakage into the environment. Amoxicillin (AMX) is a penicillin derivative used for the treatment of infections caused by gram-positive bacteria. AMX has a low metabolic rate in the human body, and around 80-90% is unmetabolized. As a result, AMX residuals should be treated immediately to avoid further accumulation in the environment. Advanced oxidation process techniques are an efficient way to degrade AMX. This review attempts to collect, organize, summarize, and analyze the most up to date research linked to the degradation of AMX by different advanced oxidation process systems including photocatalytic, ultrasonic, electro-oxidation, and advanced oxidation process-based on partials. The main topics investigated in this review are degradation mechanism, degradation efficiency, catalyst stability, the formation of AMX by-products and its toxicity, in addition, the influence of different experimental conditions was discussed such as pH, temperature, scavengers, the concentration of amoxicillin, oxidants, catalyst, and doping ratio. The degradation of AMX could be inhibited by very high values of pH, temperature, AMX concentration, oxidants concentration, catalyst concentration, and doping ratio. Several AMX by-products were discovered after oxidation treatment, and several of them had lower or same values of LC50 (96 h) fathead minnow of AMX itself, such as m/z 384, 375, 349, 323, 324, 321, 318, with prediction values of 0.70, 1.10, 1.10 0.42, 0.42, 0.42, and 0.42 mg/L, respectively. We revealed that there is no silver bullet system to oxidize AMX from an aqueous medium. However, it is recommended to apply hybrid systems such as Photo-electro, Photo-Fenton, Electro-Fenton, etc. Hybrid systems are capable to cover the drawbacks of the single system. This review may provide important information, as well as future recommendations, for future researchers interested in treating AMX using various AOP systems, allowing them to improve the applicability of their systems and successfully oxidize AMX from an aqueous medium.


Assuntos
Amoxicilina , Poluentes Químicos da Água , Catálise , Humanos , Oxidantes , Oxirredução
4.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500709

RESUMO

The physical properties, such as the fibre dimension and crystallinity, of cellulose nanofibre (CNF) are significant to its functional reinforcement ability in composites. This study used supercritical carbon dioxide as a fibre bundle defibrillation pretreatment for the isolation of CNF from bamboo, in order to enhance its physical properties. The isolated CNF was characterised through zeta potential, TEM, XRD, and FT-IR analysis. Commercial CNF was used as a reference to evaluate the effectiveness of the method. The physical, mechanical, thermal, and wettability properties of the bamboo and commercial CNF-reinforced PLA/chitin were also analysed. The TEM and FT-IR results showed the successful isolation of CNF from bamboo using this method, with good colloidal stability shown by the zeta potential results. The properties of the isolated bamboo CNF were similar to the commercial type. However, the fibre diameter distribution and the crystallinity index significantly differed between the bamboo and the commercial CNF. The bamboo CNF had a smaller fibre size and a higher crystallinity index than the commercial CNF. The results from the CNF-reinforced biocomposite showed that the physical, mechanical, thermal, and wettability properties were significantly different due to the variations in their fibre sizes and crystallinity indices. The properties of bamboo CNF biocomposites were significantly better than those of commercial CNF biocomposites. This indicates that the physical properties (fibre size and crystallinity) of an isolated CNF significantly affect its reinforcement ability in biocomposites. The physical properties of isolated CNFs are partly dependent on their source and production method, among other factors. These composites can be used for various industrial applications, including packaging.


Assuntos
Dióxido de Carbono/química , Celulose/química , Nanofibras/química , Biopolímeros/química , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962106

RESUMO

This study investigates the separation of two heavy metals, Cd(II) and Cu(II), from the mixed synthetic feed using a liquid-liquid extraction. The current study uses tri-octyl methylammonium chloride (Aliquat 336) as the extractant (with tributyl phosphate (TBP) as a phase modifier), diluted in toluene, in order to investigate the selective extraction of Cd(II) over Cu(II) ions. We investigate the use of ethylenediaminetetraacetic acid (EDTA) as a masking agent for Cu(II), when added in aqueous feed, for the selective extraction of Cd(II). Five factors that influence the selective extraction of Cd(II) over Cu(II) (the equilibrium pH (pHeq), Aliquat 336 concentration (Aliquat 336), TBP concentration (TBP), EDTA concentration (EDTA), and organic to aqueous ratio (O:A)) were analyzed. Results from a 25-1 fractional factorial design show that Aliquat 336 significantly influenced Cd(II) extraction, whereas EDTA was statistically significant for the antagonistic effect on the E% of Cu(II) in the same system. Moreover, results from optimization experiment showed that the optimum conditions are Aliquat 336 concentration of 99.64 mM and EDTA concentration of 48.86 mM-where 95.89% of Cd(II) was extracted with the least extracted Cu(II) of 0.59%. A second-order model was fitted for optimization of Cd(II) extraction with a R2 value of 0.998, and ANOVA results revealed that the model adequately fitted the data at a 5% significance level. Interaction between Aliquat 336 and Cd(II) has been proven via FTIR qualitative analysis, whereas the addition of TBP does not affect the extraction mechanism.


Assuntos
Cádmio/análise , Cádmio/isolamento & purificação , Cobre/análise , Cobre/isolamento & purificação , Extração Líquido-Líquido/métodos , Ácido Edético/química , Concentração de Íons de Hidrogênio , Líquidos Iônicos/química , Extração Líquido-Líquido/instrumentação , Organofosfatos/química , Compostos de Amônio Quaternário/química , Análise de Regressão , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tolueno/química
6.
Molecules ; 25(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036289

RESUMO

Lower dye concentrations and the presence of several dyes along with other matrices in environmental samples restrict their determination. Herein, a highly sensitive and rapid ultra-performance tandem mass spectrometric method was developed for simultaneous determination of cationic dyes, namely methylene blue (MB), rhodamine B (RB) and crystal violet (CV), in environmental samples. To preconcentrate environmental samples, solid-phase extraction cartridges were developed by using hydrogen peroxide modified pistachio shell biomass (MPSB). The surface morphological and chemical functionalities of MPSB were well characterized. The developed method was validated considering different validation parameters. In terms of accuracy and precision, the %RSD for all three dyes at all four concentration points was found to be between 1.26 and 2.76, while the accuracy reported in terms of the recovery was found to be 98.02%-101.70%. The recovery was found to be in the range of 98.11% to 99.55%. The real sample analysis shows that MB, RB, and CV were found in the ranges of 0.39-5.56, 0.32-1.92 and 0.27-4.36 µg/mL, respectively.


Assuntos
Cromatografia Líquida/métodos , Rodaminas/química , Extração em Fase Sólida/métodos , Violeta Genciana , Azul de Metileno/química
7.
Rev Environ Contam Toxicol ; 232: 61-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24984835

RESUMO

Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent.


Assuntos
Arecaceae/química , Metais Pesados/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Biomassa , Celulose/química , Carvão Vegetal/química
8.
J Basic Microbiol ; 54(12): 1279-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24852724

RESUMO

This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater.


Assuntos
Cádmio/metabolismo , Enterobacter/metabolismo , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Cádmio/química , DNA Bacteriano/genética , DNA Ribossômico/genética , Farmacorresistência Bacteriana , Enterobacter/isolamento & purificação , Poluentes Ambientais/química , Filogenia , Águas Residuárias/química
9.
Chemosphere ; 364: 143291, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243904

RESUMO

Nature iron is considered one of the promising catalysts in advanced oxidation processes (AOPs) that are utilized for soil remediation from polycyclic aromatic hydrocarbons (PAHs). However, the existence of anions, cations, and organic matter in soils considered impurities that restricted the utilization of iron that was harnessed naturally in the soil matrix and reduced the catalytic performance. In this regard, tropical soil naturally containing iron and relatively poor with impurities was artificially contaminated with 100 mg/50 g benzo[α]pyrene (B[α]P) and remediated using a slurry phase reactor supported with persulfate (PS). The results indicated that tropical soil containing iron and relatively poor with impurities capable of activating the oxidants and formation of radicals which successfully degraded B[α]P. The optimum removal result was 86% and obtained under the following conditions airflow = 260 mL/min, temperature 55 °C, pH 7, and [PS]0 = 1.0 g/L, at the same experimental conditions soil organic matter (SOM) mineralization was 48%. After the remediation process, there was a significant reduction in iron and aluminum contents, which considered the drawbacks of this system. Experiments to scavenge reactive species highlighted O2•- and SO4•- as the main radicals that oxidized B[α]P. Additionally, monitoring of by-products post-remediation aimed to assess toxicity and elucidate degradation pathways. Mutagenicity tests yielded positive results for two B[α]P by-products. The toxicity tests considered were the lethal concentration of 50% (LC50 96 h) for fat-head minnows revealed that all B[α]P by-products were less toxic than the parent pollutant itself. This research marks a significant advancement in soil remediation by advancing the use of the AOP method, removing the requirement for additional catalysts in the AOP system for the removal of B[α]P from soil.


Assuntos
Benzo(a)pireno , Recuperação e Remediação Ambiental , Ferro , Poluentes do Solo , Solo , Poluentes do Solo/química , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Benzo(a)pireno/química , Benzo(a)pireno/análise , Ferro/química , Solo/química , Oxirredução , Catálise
10.
Environ Sci Process Impacts ; 26(8): 1391-1404, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38973648

RESUMO

The presence of impurities is a significant restriction to the use of natural iron minerals as catalysts in the advanced oxidation process (AOP), especially if applied for soil remediation. This study evaluated the catalytic activity of tropical soil, which has relatively low impurities and naturally contains iron, for the remediation of phenanthrene (PHE) contamination. The system showed good performance, and the best result was 81% PHE removal after 24 h under experimental conditions of pH 7, [PHE]0 = 300 mg/50 g soil, temperature 55 °C, air flow = 260 mL min-1, and [persulfate]0 = 20 mg kg-1, while the mineralization was 61%. Nevertheless, certain limitations were noted in the soil matrix following the remediation procedure, including the appearance of cracks in the soil aggregate, reduction in the crystal size of the soil particles, and decline in the iron and aluminium contents. The results confirmed that the radicals play a major role in the remediation process. SO4˙- was more dominant than O2˙-, while HO˙ played a minor role. Additionally, the by-products were detected by gas chromatography-mass spectroscopy (GC-MS), and the degradation pathway of PHE is proposed. Toxicity assessment tests were performed by using a computational method. In spite of the challenges, this research achieved notable progress in soil remediation, taking a significant step forward in implementing the AOP without catalysts to activate oxidants and remove PHE within the soil. Also, this approach supports sustainability by reducing the need for extra materials and providing an environmentally friendly way of soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Ferro , Oxirredução , Fenantrenos , Poluentes do Solo , Solo , Fenantrenos/química , Fenantrenos/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Ferro/química , Recuperação e Remediação Ambiental/métodos , Solo/química , Catálise , Sulfatos/química
11.
Sci Total Environ ; 926: 171843, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521259

RESUMO

The catalysts derived from natural iron minerals in the advanced oxidation process offer several advantages. However, their utilization in soil remediation is restricted due to the presence of soil impurities, which can inhibit the catalytic activity of these minerals. The soils in tropical regions exhibit lower organic matter content, limited cation exchange capacity, and are non-saline, this enhances the efficiency of utilizing natural iron minerals from tropical soil as a catalyst. In this regard, the catalytic potential of naturally iron-bearing tropical soil was investigated to eliminate phenanthrene (PHE), pyrene (PYR), and benzo[α]pyrene (B[α]P) using an oxygenated reactor supported with persulfate (PS). The system showed an efficient performance, and the removal efficiencies under the optimum conditions were 81 %, 73 %, and 86 % for PHE, PYR, and B[α]P, respectively. This indicated that the catalytic activity of iron was working efficiently. However, there were changes in the soil characteristics after the remediation process such as a significant reduction in iron and aluminum contents. The scavenging experiments demonstrated that HO• had a minor role in the oxidation process, SO4•- and O2•- emerged as the primary reactive species responsible for the effective degradation of the PAHs. Moreover, the by-products were monitored after soil remediation to evaluate their toxicity and to propose degradation pathways. The Mutagenicity test showed that two by-products from each PHE and B[α]P had positive results, while only one by-product of PYR showed positive. The toxicity tests of oral rat LD50 and developmental toxicity tests revealed that certain PAHs by-products could be more toxic from the parent pollutant itself. This study represents a notable progression in soil remediation by providing a step forward in the application of the advanced oxidation process (AOP) without requiring additional catalysts to activate oxidants and degrade pollutant PAHs from the soil.

12.
Environ Sci Pollut Res Int ; 31(18): 26452-26479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546921

RESUMO

The advanced oxidation process (AOP) is an efficient method to treat recalcitrance pollutants such as pharmaceutical compounds. The essential physicochemical factors in AOP experiments significantly influence the efficiency, speed, cost, and safety of byproducts of the treatment process. In this review, we collected recent articles that investigated the elimination of pharmaceutical compounds by various AOP systems in a water medium, and then we provide an overview of AOP systems, the formation mechanisms of active radicals or reactive oxygen species (ROS), and their detection methods. Then, we discussed the role of the main physicochemical parameters (pH, chemical interference, temperature, catalyst, pollutant concentration, and oxidant concentration) in a critical way. We gained insight into the most frequent scenarios for the proper and improper physicochemical parameters for the degradation of pharmaceutical compounds. Also, we mentioned the main factors that restrict the application of AOP systems in a commercial way. We demonstrated that a proper adjustment of AOP experimental parameters resulted in promoting the treatment performance, decreasing the treatment cost and the treatment operation time, increasing the safeness of the system products, and improving the reaction stoichiometric efficiency. The outcomes of this review will be beneficial for future AOP applicants to improve the pharmaceutical compound treatment by providing a deeper understanding of the role of the parameters. In addition, the proper application of physicochemical parameters in AOP systems acts to track the sustainable development goals (SDGs).


Assuntos
Oxirredução , Preparações Farmacêuticas/química , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/química
13.
Heliyon ; 10(10): e30824, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38784543

RESUMO

Nano-structured materials gain a vast market acceptance mainly due to their overarching endurance. Nanofibrillar cellulose (NFC) is one example of an augmenting agent unviable for production by small and medium enterprises (SMEs) due to the underlying process complexity. This study aims to characterise the NFC-alternative cells denoted as TRX-cellsⓇ, which is a mix of cellulose and non-cellulose components, ruling out its status as 'cellulose nanofibers, CNF'. The aim to test-fit the TRX-cells® production process into the circularity model was executed by deliberating on the usability of the byproduct. In doing so, fibrous oil palm empty fruit bunch (EFB) was treated with dioxydanyl radicals (DIOR) and homogenised. The rapid EFB-DIOR reaction at 70°C targeting dearomatisation reaction in a 10%-solid open system was performed before refining the DIOR-treated EFB to micro-scale fibres. Subjecting the micro-fibres to 17 kWh/mt PFI-milling yielded 85-95% of nano-scale fibrous mass. Relative to the stiff micro-fibres, the nano-scale cells web exhibit 34-41% softness enhancement judged from the web tear resistance profile associated with inter-fibre space reduction. Advanced chromatographic evidence for 27% xylan amongst TRX-cells®' total aldo-sugars was one form of the non-cellulose nano-component. High-resolution Transmission Electron Microscopy hyphenated to Energy Dispersive Analysis of X-ray (HRTEM-EDX) elemental mapping showed a 0.4 atomic percentage of nano-biominerals, confirming the presence of the redistributed dearomatised cells adjacent to cellulose held in the web of the hemicellulose. Shearing at the dearomatised inter-cell wall layers by PFI mill peeled 5 nm-100 nm thickness laminae. The smorgasbord of cellulose and non-celluloses resulted in crystallinity comparable to softwood NFC of approximately 60%, with unique preservation and precision-printing enabling properties. Given the non-recyclability of the DIOR-treated EFB microfibres, nestling the rapid waste transformation process into the circularity model shed light on circular bio-nanotechnology to the spectrum of opportunity for zero-waste, reduced emission and net zero carbon practices on top of an added value from waste transformation to a product.

14.
Heliyon ; 10(6): e27787, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496878

RESUMO

The current study report a convenient, simple, and low cost approach for the biogenic synthesis of CuO/Fe3O4 nanocomposites (NCs) from pumpkin seeds extract and their vitro cytotoxicity. The characterization of finally obtained CuO/Fe3O4 nanocomposites (NCs) performed using UV-Visible, FT-IR, XRD, XPS, GC-MS, SEM-EDX and TEM analysis. The formation and elemental analysis were determined using the energy-dispersive X-ray (EDX) microanalysis technique. The formation of rod-like monoclinic and spherical, having size range 5 nm-20 nm confirmed by scanning electron microscope (SEM) and transmission electron microscopy (TEM) respectively. Finally, the MTT assay of the synthesized composites was evaluated for toxicity against cancerous cell lines HCT-116 (Colon cancer cell) and A549 (human lung adenocarcinoma cell). The synthesized composite material showed moderate (IC50 = 199 µg/mL) to low (IC50 = 445 µg/mL) activity against HCT-116 and A549 cell lines, respectively.

15.
Open Life Sci ; 19(1): 20220809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283116

RESUMO

Bacteriocins produced by Bacillus subtilis have gained recognition for their safe use in humans. In this study, we aimed to assess the inhibitory activity of an antimicrobial peptide synthesized by the wild-type strain of B. subtilis against the notorious pathogen Pseudomonas aeruginosa. Our investigation employed the broth microdilution method to evaluate the inhibitory potential of this peptide. Among the four different pathogen strains tested, P. aeruginosa exhibited the highest susceptibility, with an inhibition rate of 29.62%. In parallel, we explored the cultivation conditions of B. subtilis, recognizing the potential of this versatile bacterium for applications beyond antimicrobial production. The highest inhibitory activity was achieved at pH 8, with an inhibition rate of 20.18%, indicating the potential for optimizing pH conditions for enhanced antimicrobial peptide production. For the kinetics of peptide production, the study explored different incubation periods and agitation levels. Remarkably, the highest activity of B. subtilis was observed at 24 h of incubation, with an inhibition rate of 44.93%. Finally, the study focused on the isolation of the antimicrobial peptide from the cell-free supernatant of B. subtilis using ammonium sulfate precipitation at various concentrations. The highest recorded activity was an impressive 89.72% achieved at an 80% concentration.

16.
Bioengineering (Basel) ; 10(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978670

RESUMO

Hybrid materials are classified as one of the most highly important topics that have been of great interest to many researchers in recent decades. There are many species that can fall under this category, one of the most important of which contain biopolymeric materials as a matrix and are additionally reinforced by different types of carbon sources. Such materials are characterized by many diverse properties in a variety industrial and applied fields but especially in the field of biomedical applications. The biopolymeric materials that fall under this label are divided into natural biopolymers, which include chitosan, cellulose, and gelatin, and industrial or synthetic polymers, which include polycaprolactone, polyurethane, and conducting polymers of variable chemical structures. Furthermore, there are many types of carbon nanomaterials that are used as enhancers in the chemical synthesis of these materials as reinforcement agents, which include carbon nanotubes, graphene, and fullerene. This research investigates natural biopolymers, which can be composed of carbon materials, and the educational and medical applications that have been developed for them in recent years. These applications include tissue engineering, scaffold bones, and drug delivery systems.

17.
Biomedicines ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979948

RESUMO

The hybridization between polymers and carbon materials is one of the most recent and crucial study areas which abstracted more concern from scientists in the past few years. Polymers could be classified into two classes according to the source materials synthetic and natural. Synthetic polymeric materials have been applied over a floppy zone of industrial fields including the field of biomedicine. Carbon nanomaterials including (fullerene, carbon nanotubes, and graphene) classified as one of the most significant sources of hybrid materials. Nanocarbons are improving significantly mechanical properties of polymers in nanocomposites in addition to physical and chemical properties of the new materials. In all varieties of proposed bio-nanocomposites, a considerable improvement in the microbiological performance of the materials has been explored. Various polymeric materials and carbon-course nanofillers were present, along with antibacterial, antifungal, and anticancer products. This review spots the light on the types of synthetic polymers-based carbon materials and presented state-of-art examples on their application in the area of biomedicine.

18.
Membranes (Basel) ; 13(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367769

RESUMO

The ultrafiltration mixed matrix membrane (UF MMMs) process represents an applicable approach for the removal of diluted acetic acid at low concentrations, owing to the low pressures applied. The addition of efficient additives represents an approach to further improve membrane porosity and, subsequently, enhance acetic acid removal. This work demonstrates the incorporation of titanium dioxide (TiO2) and polyethylene glycol (PEG) as additives into polysulfone (PSf) polymer via the non-solvent-induced phase-inversion (NIPS) method to improve the performance of PSf MMMs performance. Eight PSf MMMs samples designated as M0 to M7, each with independent formulations, were prepared and investigated for their respective density, porosity, and degree of AA retention. Morphology analysis through scanning electron microscopy elucidated sample M7 (PSf/TiO2/PEG 6000) to have the highest density and porosity among all samples with concomitant highest AA retention at approximately 92.2%. The application of the concentration polarization method further supported this finding by the higher concentration of AA solute present on the surface of the membrane compared to that of AA feed for sample M7. Overall, this study successfully demonstrates the significance of TiO2 and PEG as high MW additives in improving PSf MMM performance.

19.
Polymers (Basel) ; 15(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376369

RESUMO

Mango has a high global demand. Fruit fungal disease causes post-harvest mango and fruit losses. Conventional chemical fungicides and plastic prevent fungal diseases but they are hazardous to humans and the environment. Direct application of essential oil for post-harvest fruit control is not a cost-effective approach. The current work offers an eco-friendly alternative to controlling the post-harvest disease of fruit using a film amalgamated with oil derived from Melaleuca alternifolia. Further, this research also aimed to assess the mechanical, antioxidant, and antifungal properties of the film infused with essential oil. ASTM D882 was performed to determine the tensile strength of the film. The antioxidant reaction of the film was assessed using the DPPH assay. In vitro and in vivo tests were used to evaluate the inhibitory development of the film against pathogenic fungi, by comparing the film with different levels of essential oil together with the treatment of the control and chemical fungicide. Disk diffusion was used to evaluate mycelial growth inhibition, where the film incorporated with 1.2 wt% essential oil yielded the best results. For in vivo testing of wounded mango, the disease incidence was successfully reduced. For in vivo testing of unwounded mango to which the film incorporated with essential oil was applied, although some quality parameters such as the color index were not significantly affected, weight loss was reduced, soluble solid content was increased, and firmness was increased, compared to the control. Thus, the film incorporated with essential oil (EO) from M. alternifolia can be an environmentally friendly alternative to the conventional approach and the direct application of essential oil to control post-harvest disease in mango.

20.
Environ Sci Pollut Res Int ; 29(27): 41053-41064, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35083668

RESUMO

The seed extract of Abelmoschus esculentus (AE), also known as Okra, was used as a source of reducing and capping agents to synthesized biogenic titanium dioxide nanoparticles (TiO2 NPs) due to its rich flavonoid contents. The synthesized AE-TiO2 nanoparticles were further evaluated by the effect of loading of TiO2 NPs and irradiation time on the photocatalytic degradation of methylene blue dye. The synthesized TiO2 NPs were then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), Fourier transformed infrared (FTIR) spectroscopy, Raman spectra, UV-visible spectrophotometry, and particle size distribution (PSD). The findings confirmed the successful synthesis of the spherical anatase phase of TiO2 NPs, as well as the existence of phytochemicals in the extract, which were involved in the capping/stabilization of NPs. The synthesized TiO2 NPs were found to be 60-120 nm in size and almost uniformly distributed throughout the sample. The photocatalytic activity measured in a 300 mL cylindrical photochemical reactor and irradiated with 250 watts UV lamp was investigated based on methylene blue degradation. Effects of irradiation time and catalyst loading were elucidated and correlated with the characteristics of the catalysts. The findings revealed that the synthesized TiO2 NPs were well-dispersed, stable, and could achieve more than 80 % degradation in 240 min of irradiation with 90 mg/L of AE-TiO2 NPs loading compared to only 70 % by the commercial one. These results suggested that AE-TiO2 NPs possesses significant catalytic activity, and the photocatalytic process could be used to degrade, decolorize, and mineralize the methylene blue dye. The polyphenolic tannins present in the extract were the reason behind the desirable characteristics of the nanoparticles and better photocatalytic activity of AE-TiO2 NPs.


Assuntos
Abelmoschus , Catálise , Azul de Metileno/química , Extratos Vegetais/química , Titânio/química , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA