Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ecol Lett ; 27(1): e14349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178545

RESUMO

The emergence of billions of periodical cicadas affects plant and animal communities profoundly, yet little is known about cicada impacts on soil carbon fluxes. We investigated the effects of Brood X cicadas (Magicicada septendecim, M. cassinii and M. septendeculain) on soil CO2 fluxes (RS ) in three Indiana forests. We hypothesized RS would be sensitive to emergence hole density, with the greatest effects occurring in soils with the lowest ambient fluxes. In support of our hypothesis, RS increased with increasing hole density and greater effects were observed near AM-associating trees (which expressed lower ambient fluxes) than near EcM-associating trees. Additionally, RS from emergence holes increased the temperature sensitivity (Q10 ) of RS by 13%, elevating the Q10 of ecosystem respiration. Brood X cicadas increased annual RS by ca. 2.5%, translating to an additional 717 Gg of CO2 across forested areas. As such, periodical cicadas can have substantial effects on soil processes and biogeochemistry.


Assuntos
Hemípteros , Micorrizas , Animais , Árvores , Ecossistema , Solo , Dióxido de Carbono , Florestas
2.
J Am Chem Soc ; 145(29): 15652-15657, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462273

RESUMO

Halogen atoms are important atmospheric oxidants that have unidentified daytime sources from photochemical halide oxidation in sea salt aerosols. Here, we show that the photolysis of nitrate in aqueous chloride solutions generates nitryl chloride (ClNO2) in addition to Cl2 and HOCl. Experimental and modeling evidence suggests that O(3P) formed in the minor photolysis channel from nitrate oxidizes chloride to Cl2 and HOCl, which reacts with nitrite to form ClNO2. This chemistry is different than currently accepted mechanisms involving chloride oxidation by OH and could shift our understanding of daytime halogen cycling in the lower atmosphere.

3.
Environ Sci Technol ; 57(1): 85-95, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36533654

RESUMO

A selective catalytic converter has been developed to quantify nitrous acid (HONO), a photochemical precursor to NO and OH radicals that drives the formation of ozone and other pollutants in the troposphere. The converter is made from a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer (Nafion) that was found to convert HONO to NO with unity yield under specific conditions. When coupled to a commercially available NOx (=NO + NO2) chemiluminescence (CL) analyzer, the system measures HONO with a limit of detection as low as 64 parts-per-trillion (ppt) (1 min average) in addition to NOx. The converter is selective for HONO when tested against other common gas-phase reactive nitrogen species, although loss of O3 on Nafion is a potential interference. The sensitivity and selectivity of this method allow for accurate measurement of atmospherically relevant concentrations of HONO. This was demonstrated by good agreement between HONO measurements made with the Nafion-CL method and those made with chemical ionization mass spectrometry in a simulation chamber and in indoor air. The observed reactivity of HONO on Nafion also has significant implications for the accuracy of CL NOx analyzers that use Nafion to remove water from sampling lines.


Assuntos
Poluentes Atmosféricos , Ozônio , Polímeros de Fluorcarboneto/análise , Ácido Nitroso/análise , Ácido Nitroso/química , Poluentes Atmosféricos/análise , Ozônio/análise
4.
Proc Natl Acad Sci U S A ; 116(6): 2138-2145, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659144

RESUMO

Reactive nitrogen oxides (NOy; NOy = NO + NO2 + HONO) decrease air quality and impact radiative forcing, yet the factors responsible for their emission from nonpoint sources (i.e., soils) remain poorly understood. We investigated the factors that control the production of aerobic NOy in forest soils using molecular techniques, process-based assays, and inhibitor experiments. We subsequently used these data to identify hotspots for gas emissions across forests of the eastern United States. Here, we show that nitrogen oxide soil emissions are mediated by microbial community structure (e.g., ammonium oxidizer abundances), soil chemical characteristics (pH and C:N), and nitrogen (N) transformation rates (net nitrification). We find that, while nitrification rates are controlled primarily by chemoautotrophic ammonia-oxidizing archaea (AOA), the production of NOy is mediated in large part by chemoautotrophic ammonia-oxidizing bacteria (AOB). Variation in nitrification rates and nitrogen oxide emissions tracked variation in forest communities, as stands dominated by arbuscular mycorrhizal (AM) trees had greater N transformation rates and NOy fluxes than stands dominated by ectomycorrhizal (ECM) trees. Given mapped distributions of AM and ECM trees from 78,000 forest inventory plots, we estimate that broadleaf forests of the Midwest and the eastern United States as well as the Mississippi River corridor may be considered hotspots of biogenic NOy emissions. Together, our results greatly improve our understanding of NOy fluxes from forests, which should lead to improved predictions about the atmospheric consequences of tree species shifts owing to land management and climate change.


Assuntos
Ecossistema , Microbiologia Ambiental , Florestas , Microbiota , Espécies Reativas de Nitrogênio , Solo , Geografia , Redes e Vias Metabólicas , Óxido Nítrico/metabolismo , Nitrificação , Oxirredução
5.
Environ Sci Technol ; 55(18): 12233-12242, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34449200

RESUMO

Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.


Assuntos
Caulim , Ácido Nitroso , Argila , Microscopia , Minerais
6.
Glob Chang Biol ; 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319480

RESUMO

Volatile nitrogen oxides (N2 O, NO, NO2 , HONO, …) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory trees, leading to predictable N-cycling syndromes, with consequences for emissions of volatile nitrogen oxides to air. Trees associating with arbuscular mycorrhizal (AM) fungi promote soil microbial communities with higher N-cycle potential and activity, relative to microbial communities in soils dominated by trees associating with ectomycorrhizal (ECM) fungi. Metagenomic analysis and gene expression studies reveal a 5 and 3.5 times greater estimated N-cycle gene and transcript copy numbers, respectively, in AM relative to ECM soil. Furthermore, we observe a 60% linear decrease in volatile reactive nitrogen gas flux (NOy  ≡ NO, NO2 , HONO) as ECM tree abundance increases. Compared to oxic conditions, gas flux potential of N2 O and NO increase significantly under anoxic conditions for AM soil (30- and 120-fold increase), but not ECM soil-likely owing to small concentrations of available substrate ( NO 3 - ) in ECM soil. Linear mixed effects modeling shows that ECM tree abundance, microbial process rates, and geographic location are primarily responsible for variation in peak potential NOy flux. Given that nearly all tree species associate with either AM or ECM fungi, our results indicate that the consequences of tree species shifts associated with global change may have predictable consequences for soil N cycling.

7.
Geophys Res Lett ; 46(5): 2940-2948, 2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31068737

RESUMO

Formic acid (HCOOH) is among the most abundant carboxylic acids in the atmosphere, but its budget is poorly understood. We present eddy flux, vertical gradient, and soil chamber measurements from a mixed forest and apply the data to better constrain HCOOH source/sink pathways. While the cumulative above-canopy flux was downward, HCOOH exchange was bidirectional, with extended periods of net upward and downward flux. Net above-canopy fluxes were mostly upward during warmer/drier periods. The implied gross canopy HCOOH source corresponds to 3% and 38% of observed isoprene and monoterpene carbon emissions and is 15× underestimated in a state-of-science atmospheric model (GEOS-Chem). Gradient and soil chamber measurements identify the canopy layer as the controlling source of HCOOH or its precursors to the forest environment; below-canopy sources were minor. A correlation analysis using an ensemble of marker volatile organic compounds suggests that secondary formation, not direct emission, is the major source driving ambient HCOOH.

8.
Environ Sci Technol ; 51(17): 9633-9643, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28742971

RESUMO

Humic acid (HA) is thought to promote NO2 conversion to nitrous acid (HONO) on soil surfaces during the day. However, it has proven difficult to identify the reactive sites in natural HA substrates. The mechanism of NO2 reduction on soil surrogates composed of HA and clay minerals was studied by use of a coated-wall flow reactor and cavity-enhanced spectroscopy. Conversion of NO2 to HONO in the dark was found to be significant and correlated to the abundance of C-O moieties in HA determined from the X-ray photoelectron spectra of the C 1s region. Twice as much HONO was formed when NO2 reacted with HA that was photoreduced by irradiation with UV-visible light compared to the dark reaction; photochemical reactivity was correlated to the abundance of C═O moieties rather than C-O groups. Bulk electrolysis was used to generate HA in a defined reduction state. Electrochemically reduced HA enhanced NO2-to-HONO conversion by a factor of 2 relative to non-reduced HA. Our findings suggest that hydroquinones and benzoquinones, which are interchangeable via redox equilibria, contribute to both thermal and photochemical HONO formation. This conclusion is supported by experiments that studied NO2 reactivity on mineral surfaces coated with the model quinone, juglone. Results provide further evidence that redox-active sites on soil surfaces drive ground-level NO2-to-nitrite conversion in the atmospheric boundary layer throughout the day, while amphoteric mineral surfaces promote the release of nitrite formed as gaseous HONO.


Assuntos
Ácido Nitroso , Quinonas/química , Nitritos , Oxirredução , Solo
9.
Phys Chem Chem Phys ; 19(43): 29549-29560, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29082395

RESUMO

Nitroxyl (HNO) and hydrogen peroxide have both been implicated in a variety of reactions relevant to environmental and physiological processes and may contribute to a unique, unexplored, pathway for the production of nitrous acid (HONO) in soil. To investigate the potential for this reaction, we report an in-depth investigation of the reaction pathway of H2O2 and HNO forming HONO and water. We find the breaking of the peroxide bond and a coupled proton transfer in the first step leads to hydrogen nitryl (HNO2) and an endogenous water, with an extrapolated NEVPT2 (multireference perturbation theory) barrier of 29.3 kcal mol-1. The first transition state is shown to possess diradical character linking the far peroxide oxygen to the bridging, reacting, peroxide oxygen. The energy of this first step, when calculated using hybrid density functional theory, is shown to depend heavily on the amount of Hartree-Fock exchange in the functional, with higher amounts leading to a higher barrier and more diradical character. Additionally, high amounts of spin contamination cause CCSD(T) to significantly overestimate the TS1 barrier with a value of 36.2 kcal mol-1 when using the stable UHF wavefunction as the reference wavefunction. However, when using the restricted Hartree-Fock reference wavefunction, the TS1 CCSD(T) energy is lowered to yield a barrier of 31.2 kcal mol-1, in much better agreement with the NEVPT2 result. The second step in the reaction is the isomerization of HNO2 to trans-HONO through a Grotthuss-like mechanism accepting a proton from and donating a proton to the endogenous water. This new mechanism for the isomerization of HNO2 is shown to have an NEVPT2 barrier of 23.3 kcal mol-1, much lower than previous unimolecular estimates not including an explicit water. Finally, inclusion of an additional explicit water is shown to lower the HNO2 isomerization barrier even further.

10.
Proc Natl Acad Sci U S A ; 111(52): 18472-7, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512517

RESUMO

Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.


Assuntos
Atmosfera/química , Radical Hidroxila/química , Modelos Químicos , Ácido Nitroso/química , Solo/química , Concentração de Íons de Hidrogênio , Potenciometria
11.
Environ Sci Technol ; 50(16): 8649-60, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409359

RESUMO

Nitrous acid (HONO) accumulates in the nocturnal boundary layer where it is an important source of daytime hydroxyl radicals. Although there is clear evidence for the involvement of heterogeneous reactions of NO2 on surfaces as a source of HONO, mechanisms remain poorly understood. We used coated-wall flow tube measurements of NO2 reactivity on environmentally relevant surfaces (Fe (hydr)oxides, clay minerals, and soil from Arizona and the Saharan Desert) and detailed mineralogical characterization of substrates to show that reduction of NO2 by Fe-bearing minerals in soil can be a more important source of HONO than the putative NO2 hydrolysis mechanism. The magnitude of NO2-to-HONO conversion depends on the amount of Fe(2+) present in substrates and soil surface acidity. Studies examining the dependence of HONO flux on substrate pH revealed that HONO is formed at soil pH < 5 from the reaction between NO2 and Fe(2+)(aq) present in thin films of water coating the surface, whereas in the range of pH 5-8 HONO stems from reaction of NO2 with structural iron or surface complexed Fe(2+) followed by protonation of nitrite via surface Fe-OH2(+) groups. Reduction of NO2 on ubiquitous Fe-bearing minerals in soil may explain HONO accumulation in the nocturnal boundary layer and the enhanced [HONO]/[NO2] ratios observed during dust storms in urban areas.


Assuntos
Ferro/química , Minerais/química , Ácido Nitroso/química , Solo/química , África do Norte , Arizona , Nitritos/química
12.
Environ Sci Technol ; 49(23): 13825-34, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26248160

RESUMO

Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Consórcios Microbianos/genética , Ácido Nitroso , Microbiologia do Solo , Agricultura , Archaea/genética , Atmosfera/química , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Genômica/métodos , Indiana , Consórcios Microbianos/fisiologia , Nitrificação , Isótopos de Nitrogênio/análise , Ácido Nitroso/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Solo/química , Urbanização
13.
Environ Sci Technol ; 48(20): 11991-2001, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25271384

RESUMO

Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry.


Assuntos
Nitratos/química , Dióxido de Nitrogênio/química , Ácido Nitroso/química , Fotólise , Aerossóis/química , Óxidos de Nitrogênio/química , Fotoquímica/métodos , Soluções/química , Água/química
14.
Environ Sci Technol ; 48(1): 375-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328088

RESUMO

Nitrous acid (HONO) is an important OH radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Large uncertainties remain in quantifying HONO sinks and determining the mechanism of HONO uptake onto surfaces. We report here the first laboratory determination of HONO uptake coefficients onto actual soil under atmospheric conditions using a coated-wall flow tube coupled to a highly sensitive chemical ionization mass spectrometer (CIMS). Uptake coefficients for HONO decrease with increasing RH from (2.5 ± 0.4) × 10(-4) at 0% RH to (1.1 ± 0.4) × 10(-5) at 80% RH. A kinetics model of competitive adsorption of HONO and water onto the particle surfaces fits the dependence of the HONO uptake coefficients on the initial HONO concentration and relative humidity. However, a multiphase resistor model based on the physical and chemical processes affecting HONO uptake is more flexible as it accounts for the pH dependence of HONO uptake and bulk diffusion in the soil matrix. Fourier transform infrared (FTIR) spectrometry and cavity-enhanced absorption spectroscopy (CEAS) studies indicate that NO and N2O (16% and 13% yield, respectively) rather than NO2 are the predominant gas phase products, while NO2(-) and NO3(-) were detected on the surface post-exposure. Results are compared to uptake coefficients inferred from models and field measurements, and the atmospheric implications are discussed.


Assuntos
Ácido Nitroso/química , Solo/química , Adsorção , Gases/química , Cinética , Nitratos/química , Óxido Nítrico/química , Nitritos/química , Análise Espectral/métodos , Propriedades de Superfície , Água/química
15.
J Am Chem Soc ; 135(23): 8606-15, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23721064

RESUMO

Ammonia is the most abundant reduced nitrogen species in the atmosphere and an important precursor in the industrial-scale production of nitric acid. A coated-wall flow tube coupled to a chemiluminescence NOx analyzer was used to study the kinetics of NH3 uptake and NOx formation from photochemistry initiated on irradiated (λ > 290 nm) TiO2 surfaces under atmospherically relevant conditions. The speciation of NH3 on TiO2 surfaces in the presence of surface-adsorbed water was determined using diffuse reflection infrared Fourier transform spectroscopy. The uptake kinetics exhibit an inverse dependence on NH3 concentration as expected for reactions proceeding via a Langmuir-Hinshelwood mechanism. The mechanism of NOx formation is shown to be humidity dependent: Water-catalyzed reactions promote NOx formation up to a relative humidity of 50%. Less NOx is formed above 50%, where increasing amounts of adsorbed water may hinder access to reactive sites, promote formation of unreactive NH4(+), and reduce oxidant levels due to higher OH radical recombination rates. A theoretical study of the reaction between the NH2 photoproduct and O2 in the presence of H2O supports the experimental conclusion that NOx formation is catalyzed by water. Calculations at the MP2 and CCSD(T) level on the bare NH2 + O2 reaction and the reaction of NH2 + O2 in small water clusters were carried out. Solvation of NH2OO and NHOOH intermediates likely facilitates isomerization via proton transfer along water wires, such that the steps leading ultimately to NO are exothermic. These results show that photooxidation of low levels of NH3 on TiO2 surfaces represents a source of atmospheric NOx, which is a precursor to ozone. The proposed mechanism may be broadly applicable to dissociative chemisorption of NH3 on other metal oxide surfaces encountered in rural and urban environments and employed in pollution control applications (selective catalytic oxidation/reduction) and during some industrial processes.


Assuntos
Amônia/química , Atmosfera/química , Óxido Nítrico/síntese química , Dióxido de Nitrogênio/síntese química , Titânio/química , Óxido Nítrico/química , Dióxido de Nitrogênio/química , Oxirredução , Processos Fotoquímicos , Propriedades de Superfície
16.
Proc Natl Acad Sci U S A ; 106(33): 13647-54, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19620710

RESUMO

Gaseous HCl generated from a variety of sources is ubiquitous in both outdoor and indoor air. Oxides of nitrogen (NO(y)) are also globally distributed, because NO formed in combustion processes is oxidized to NO(2), HNO(3), N(2)O(5) and a variety of other nitrogen oxides during transport. Deposition of HCl and NO(y) onto surfaces is commonly regarded as providing permanent removal mechanisms. However, we show here a new surface-mediated coupling of nitrogen oxide and halogen activation cycles in which uptake of gaseous NO(2) or N(2)O(5) on solid substrates generates adsorbed intermediates that react with HCl to generate gaseous nitrosyl chloride (ClNO) and nitryl chloride (ClNO(2)), respectively. These are potentially harmful gases that photolyze to form highly reactive chlorine atoms. The reactions are shown both experimentally and theoretically to be enhanced by water, a surprising result given the availability of competing hydrolysis reaction pathways. Airshed modeling incorporating HCl generated from sea salt shows that in coastal urban regions, this heterogeneous chemistry increases surface-level ozone, a criteria air pollutant, greenhouse gas and source of atmospheric oxidants. In addition, it may contribute to recently measured high levels of ClNO(2) in the polluted coastal marine boundary layer. This work also suggests the potential for chlorine atom chemistry to occur indoors where significant concentrations of oxides of nitrogen and HCl coexist.


Assuntos
Cloro/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases , Ácido Clorídrico/química , Modelos Químicos , Conformação Molecular , Nitrogênio/química , Óxidos de Nitrogênio/química , Oxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
17.
Phys Chem Chem Phys ; 13(2): 604-11, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21042648

RESUMO

Alumina is an important component of airborne dust particles as well as of building materials and soils found in the tropospheric boundary layer. While the uptake and reactions of oxides of nitrogen and their photochemistry on alumina have been reported in the past, little is known about the chemistry when organics are also present. Fourier transform infrared (FTIR) spectroscopy at ∼23 °C was used to study reactions of NO(2) on γ-Al(2)O(3) particles that had been derivatized using 7-octenyltrichlorosilane to form a self-assembled monolayer (SAM). For comparison, the reactions with untreated γ-Al(2)O(3) were also studied. In both cases, the particles were exposed to water vapor prior to NO(2) to provide adsorbed water for reaction. As expected, surface-bound HONO, NO(2)(-), and NO(3)(-) were formed. Surprisingly, oxidation of the organic by surface-bound nitrogen oxides was observed in the dark, forming organo-nitrogen products identified as nitronates (R(2)C[double bond, length as m-dash]NO(2)(-)). Oxidation was more rapid under irradiation (λ > 290 nm) and formed organic nitrates and carbonyl compounds and/or peroxy nitrates in addition to the products observed in the dark. Mass spectrometry of the gas phase during irradiation revealed the production of NO, CO(2), and CO. These studies provide evidence for oxidation of organic compounds on particles and boundary layer surfaces that are exposed to air containing oxides of nitrogen, as well as new pathways for the formation of nitrogen-containing compounds on these surfaces.

18.
Environ Sci Technol ; 44(21): 8150-5, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20879762

RESUMO

Alkyl nitrites photolyze in air to yield alkoxy radicals and NO which, through secondary reactions, generate OH radicals. This photochemistry is important in the atmosphere and in laboratory studies where nitrites are often used as a source of OH. The overall quantum yield for hydroxyl radical formation from irradiation of isopropyl nitrite (i-C(3)H(7)ONO) between 300 and 425 nm in 1 atm air at 296 ± 2 K is reported for the first time. The OH radical was scavenged by reaction with CF(3)CF═CF(2) and the formation of CF(3)CFO and CF(2)O monitored as a function of time using Fourier transform infrared spectrometry. The quantum yield was found to be 0.54 ± 0.07 (2σ) and is independent of whether or not NO was added (up to 3 × 10(14) molecules cm(-3)) prior to photolysis to increase NO concentrations above those due to the photolysis of the nitrite. Ultraviolet-visible and infrared cross sections of i-C(3)H(7)ONO are also reported. These data on the OH quantum yields as well as the UV-visible and infrared cross sections for isopropyl nitrite are critical for quantitatively interpreting the results of laboratory studies where i-C(3)H(7)ONO is employed as an OH source as well as for assessing the role of alkyl nitrites in the chemistry of the troposphere.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Radical Hidroxila/análise , Nitritos/química , Poluentes Atmosféricos/síntese química , Radical Hidroxila/síntese química , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
19.
J Phys Chem A ; 114(13): 4609-18, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20232807

RESUMO

High level ab initio calculations of clusters comprised of water, HCl, and ON-ONO(2) are used to study nitrosyl chloride (ClNO) formation in gas phase water clusters, which are also mimics for thin water films present at environmental interfaces. Two pathways are considered, direct formation from the reaction of gaseous HCl with ON-ONO(2) and an indirect pathway involving the hydrolysis of ON-ONO(2) to form HONO, followed by the reaction of HONO with HCl to form ClNO. Surprisingly, direct formation of ClNO is found to be the dominant channel in the presence of water despite the possibility of a competing hydrolysis of ON-ONO(2) to form HONO. A single water molecule effectively catalyzes the ON-ONO(2) + HCl reaction, and in the presence of two or more water molecules the reaction to form ClNO becomes spontaneous. Direct formation of ClNO is fast at room and ice temperatures, indicating the possible significance of this pathway for chlorine activation chemistry in both the polar and midlatitude troposphere, in volcanic plumes and indoors. The reaction enthalpies, activation energies, and rate constants for all studied reactions are reported. The results are discussed in light of recent experiments.

20.
Phys Chem Chem Phys ; 10(39): 6019-32, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18825290

RESUMO

Calculations were performed to determine the structures, energetics, and spectroscopy of the atmospherically relevant complexes (HNO(3)).(NO(2)), (HNO(3)).(N(2)O(4)), (NO(3)(-)).(NO(2)), and (NO(3)(-)).(N(2)O(4)). The binding energies indicate that three of the four complexes are quite stable, with the most stable (NO(3)(-)).(N(2)O(4)) possessing binding energy of almost -14 kcal mol(-1). Vibrational frequencies were calculated for use in detecting the complexes by infrared and Raman spectroscopy. An ATR-FTIR experiment showed features at 1632 and 1602 cm(-1) that are attributed to NO(2) complexed to NO(3)(-) and HNO(3), respectively. The electronic states of (HNO(3)).(N(2)O(4)) and (NO(3)(-)).(N(2)O(4)) were investigated using an excited state method and it was determined that both complexes possess one low-lying excited state that is accessible through absorption of visible radiation. Evidence for the existence of (NO(3)(-)).(N(2)O(4)) was obtained from UV/vis absorption spectra of N(2)O(4) in concentrated HNO(3), which show a band at 320 nm that is blue shifted by 20 nm relative to what is observed for N(2)O(4) dissolved in organic solvents. Finally, hydrogen transfer reactions within the (HNO(3)).(NO(2)) and (HNO(3)).(N(2)O(4)) complexes leading to the formation of HONO, were investigated. In both systems the calculated potential profiles rule out a thermal mechanism, but indicate the reaction could take place following the absorption of visible radiation. We propose that these complexes are potentially important in the thermal and photochemical production of HONO observed in previous laboratory and field studies.


Assuntos
Nitratos/química , Ácido Nítrico/química , Nitritos/química , Dióxido de Nitrogênio/química , Óxidos de Nitrogênio/química , Ácido Nitroso/síntese química , Poluentes Atmosféricos/química , Atmosfera , Simulação por Computador , Modelos Químicos , Ácido Nitroso/química , Espectrofotometria Infravermelho/métodos , Espectrofotometria Ultravioleta/métodos , Análise Espectral Raman/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA