Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Technol ; : 1-15, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37255221

RESUMO

The spread and development of Multi-Drug Resistant (MDR) bacteria in wastewater became beyond control and a global public health concern. The conventional disinfectants used in wastewater treatment methods have been becoming increasingly ineffective against a range of pathogenic and MDR bacteria. Bacteriophages are considered a novel approach to microbial control. Therefore, this study aims to explore the possibility of using phages against pathogenic and MDR Escherichia coli strains isolated from wastewater treatment plants. The wastewater samples were collected from two different treatment plants for E. coli isolation. The antibiotic sensitivity profile and occurrence of virulence and resistant genes were tested in 28 E. coli isolates. Phage ZCEC13 was selected based on its promising activity and host range to undergo identification and characterization. ZCEC13 was evaluated by transmission electron microscopy, genomic sequencing, in vitro lytic activity and tested for its stability under different conditions such as pH, Ultraviolet light exposure, and temperature. The results reported that ZCEC13 belongs to the Caudoviricetes class, with a high antibacterial dynamic. Phage ZCEC13 displayed high stability at different pH values ranging from 2 to 12, good tolerance to temperatures from -4 to 65°C, and high stability at UV exposure for 120 min. Respectively, the findings showed stability of the phage under several conditions and high efficiency in killing MDR bacteria isolated from the treatment plants. Further studies are encouraged to analyse the efficacy of phages as a microbial control agent in wastewater treatment plants.

2.
Antibiotics (Basel) ; 10(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525684

RESUMO

Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving endolysins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA