Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(1): 842-855, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275668

RESUMO

Due to the scientific success of in vitro and in vivo model studies, the interest in using mesenchymal stromal cells (MSCs) for the treatment of orthopaedic conditions is growing. In the context of osteoarthritis (OA), MSCs, and, in particular, those derived from adipose tissues (ASCs), have found broader access to clinical use as active components of minimally manipulated orthobiologics, as well as clinically expanded cell preparations, or to collect their released factors (secretome) for cell-free approaches. In this regard, while both inflammatory priming and starvation are common strategies used to empower cell potency or collect the secretome, respectively, little is known about the possible influence of these approaches on the stability of housekeeping genes (HKGs) for molecular studies able to fingerprint cell phenotype or potency. In this report, the reliability of five commonly used HKGs (ACTB, B2M, GAPDH, HPRT1 and RPLP0) was tested in ASCs cultured under standard protocol after inflammatory priming or starvation. Gene expression data were computed with four different applets able to rank genes depending on their stability in either single or combined conditions. The obtained final ranking suggests that for each treatment, a specific HKG is needed, and that starvation is the condition with the stronger effect on HKGs' stability and, therefore, reliability. The normalization effect of proper HKGs' use was then validated on three genes involved in OA and whose product is released by ASCs. Overall, data presented herein confirm that the choice of the best HKG has to be carefully considered and that each specific condition has to be tested to identify the most reliable candidate.

2.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928156

RESUMO

Osteoarthritis (OA) is a degenerative joint disorder characterized by the progressive deterioration of articular cartilage driven and sustained by catabolic and inflammatory processes that lead to pain and functional impairment. Adipose-derived stem cells (ASCs) have emerged as a promising therapeutic strategy for OA due to their regenerative potential, which mainly relies on the adaptive release of paracrine molecules that are soluble or encapsulated in extracellular vesicles (EVs). The biological effects of EVs specifically depend on their cargo; in particular, microRNAs (miRNAs) can specifically modulate target cell function through gene expression regulation. This study aimed to investigate the impact of collection site (abdominal vs. peri-trochanteric adipose tissue) and collection method (surgical excision vs. lipoaspiration) on the miRNAs profile in ASC-derived EVs and their potential implications for OA therapy. EV-miRNA cargo profiles from ASCs of different origins were compared. An extensive bioinformatics search through experimentally validated and OA-related targets, pathways, and tissues was conducted. Several miRNAs involved in the restoration of cartilage homeostasis and in immunomodulation were identified in all ASC types. However, EV-miRNA expression profiles were affected by both the tissue-harvesting site and procedure, leading to peculiar characteristics for each type. Our results suggest that adipose-tissue-harvesting techniques and the anatomical site of origin influence the therapeutic efficacy of ASC-EVs for tissue-specific regenerative therapies in OA, which warrants further investigation.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Osteoartrite/genética , Osteoartrite/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Regulação da Expressão Gênica
3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338737

RESUMO

The therapeutic effect of mesenchymal stromal cells (MSCs) has been described for a variety of disorders, including those affecting musculoskeletal tissues. In this context, the literature reports several data about the regenerative effectiveness of MSCs derived from bone marrow, adipose tissue, and an amniotic membrane (BMSCs, ASCs, and hAMSCs, respectively), either when expanded or when acting as clinical-grade biologic pillars of products used at the point of care. To date, there is no evidence about the superiority of one source over the others from a clinical perspective. Therefore, a reliable characterization of the tissue-specific MSC types is mandatory to identify the most effective treatment, especially when tailored to the target disease. Because molecular characterization is a crucial parameter for cell definition, the need for reliable normalizers as housekeeping genes (HKGs) is essential. In this report, the stability levels of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) were sifted into BMSCs, ASCs, and hAMSCs. Adult and fetal/neonatal MSCs showed opposite HKG stability rankings. Moreover, by analyzing MSC types side-by-side, comparison-specific HKGs emerged. The effect of less performant HKG normalization was also demonstrated in genes coding for factors potentially involved in and predicting MSC therapeutic activity for osteoarthritis as a model musculoskeletal disorder, where the choice of the most appropriate normalizer had a higher impact on the donors rather than cell populations when compared side-by-side. In conclusion, this work confirms HKG source-specificity for MSCs and suggests the need for cell-type specific normalizers for cell source or condition-tailored gene expression studies.


Assuntos
Genes Essenciais , Células-Tronco Mesenquimais , Medula Óssea , Diferenciação Celular/genética , Medicina Regenerativa , Âmnio , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396899

RESUMO

The Second International StemNet (Federation of Stem Cell Research Associations) meeting took place on 18-20 October 2023 in Brescia (Italy), with the support of the University of Brescia and the Zooprophylactic Institute of Lombardy and Emilia Romagna. The program of the meeting was articulated in nine sections: (1) Biomedical Communication in Italy: Critical Aspects; (2) StemNet Next Generation Session; (3) Cell-Free Therapies; (4) Tips and Tricks of Research Valorisation; (5) Stem Cells and Cancer; (6) Stem Cells in Veterinary Applications; (7) Stem Cells in Clinical Applications; (8) Organoids and 3D Systems; (9) induced pluripotent stem cells (iPCS) and Gene Therapy. National and International speakers presented their scientific works, inspiring debates and discussions among the attendees. The participation in the meeting was high, especially because of the young researchers who animated all the sessions and the rich poster session.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Neoplasias/terapia , Itália , Terapia Genética , Terapia Baseada em Transplante de Células e Tecidos
5.
BMC Musculoskelet Disord ; 24(1): 647, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573322

RESUMO

BACKGROUND: Knee osteoarthritis (OA) is a progressive and degenerative condition. Several pharmacological and non-pharmacological treatments are able to improve the OA symptoms and the structural characteristics of the affected joints. Among these, infiltrative therapy with hyaluronic acid (HA) is the most used and consolidated procedure for the pain management. The addition of skin conditioning peptides to HA promotes the cartilage remodeling processes and a better permeation of the HA-based gel containing a peptide mixture, CR500®. Furthermore, the topic route of administration is convenient over the routinely used intra-articular injective procedures. In this study, the effectiveness of CR500® was evaluated in terms of improvement of the algo-functional symptoms related to unilateral knee OA. METHODS: 38 mild and moderate OA patients were enrolled at a screening visit (V-1), treated at baseline visit (V1), and then continued the topical application of CR500® twice a week for 4 weeks, and followed-up for 3 visits (V2-V4) from week 2 to 4. Lequesne Knee Index (LKI) and Knee injury and Osteoarthritis Outcome Score (KOOS) were collected. Synovial fluid was collected and used for the quantification of neoepitope of type II collagen (C2C), C-terminal telopeptide of type II collagen (CTX-II), type II collagen propeptide (CPII), tumor necrosis factor alpha (TNFα) and HA. The expression of CD11c and CD206 was evaluated on cell pellets. RESULTS: Three patients were excluded, thus 35 patients were included in the analysis. The treatment with CR500® was safe and well tolerated, with 7.9% patients had mild adverse events, not related to the device. The LKI total score showed a significant decrease from V1 to V4. KOOS score also showed a significant improvement of patient condition at V2, V3 and V4 in comparison with V1 for all subscales, except for KOOS sport subscale which improved only from V3. At V1 a negative correlation among KOOS pain subscale values and C2C, CPII and TNFα levels was observed, as well as a positive correlation between KOOS pain subscale and CD11c/CD206 ratio. CONCLUSION: CR500® is safe and appear to be effective in improving pain and function in OA patients during the 4 weeks of treatment. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT05661162. This trial was registered on 22/12/2022.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/induzido quimicamente , Colágeno Tipo II , Fator de Necrose Tumoral alfa , Resultado do Tratamento , Ácido Hialurônico , Dor/tratamento farmacológico , Injeções Intra-Articulares
6.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768948

RESUMO

Osteoarthritis (OA) is a chronic disease characterized by joint tissue disruption and inflammation with a paucity of therapeutic options. Chondrocyte in vitro models are commonly used as the first step in evaluating new approaches and rely on the stimulation of an OA-like phenotype with inflammation often the method of choice. Inflammatory priming is frequently based on cytokines used at concentrations very far from the reality in the patients' synovial fluid (SF). The aim of this work was to compare the transcriptional response of chondrocytes to different inflammatory conditions: the high levels of IL1ß that are used for standardized inflammation protocols, OA-SF, IL1ß, IL6 and IFNγ at SF-like concentrations both individually and simultaneously to mimic a simplified "in vitro" SF. Both high IL1ß and OA-SF strongly influenced chondrocytes, while SF-like concentrations of cytokines gave weak (IL1ß alone or in combination) or no (IL6 and IFNγ alone) outcomes. Chondrocytes under the two most powerful polarizing conditions had a clearly distinct fingerprint, with only a shared albeit molecularly divergent effect on ECM stability, with IL1ß mainly acting on ECM degrading enzymes and OA-SF accounting for a higher turnover in favor of fibrous collagens. Moreover, OA-SF did not induce the inflammatory response observed with IL1ß. In conclusion, although partially similar in the endpoint phenotype, this work intends to encourage reflection on the robustness of inflammation-based in vitro OA models for molecular studies on chondrocytes.


Assuntos
Osteoartrite , Líquido Sinovial , Humanos , Condrócitos , Interleucina-6/genética , Osteoartrite/tratamento farmacológico , Citocinas/uso terapêutico , Inflamação
7.
Int Orthop ; 46(2): 391-400, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727209

RESUMO

PURPOSE: The aims of the present study were: (1) to characterize the bone-marrow aspirate (BMA) obtained with a centrifuge-free process, employing a dedicated aspiration device; (2) to test the in vitro efficacy of BMA in a model of cartilage inflammation; and (3) to report the preliminary clinical results in a small cohort of patients affected by knee OA. METHODS: Ten patients (4 M, 6 W; mean age: 51.9 ± 9.2 yy) affected by mild to moderate unicompartmental knee OA (KL grade 2-3) were treated by intra-articular and subchondral injections of BMA obtained by a centrifuge-free process. To evaluate the effectiveness of the device in harvesting mesenchymal stem cells (MSCs), samples of the obtained BMA were tested by flow cytometry before and after subculture; BMA ability to counteract inflammation was also tested in an in vitro model of cartilage cell inflammation, evaluating the expression of MMP1, MMP3, TGFß and TIMP-1 by real-time PCR. Patients were also evaluated up to two years' follow-up by using: VAS for pain, IKDC-subjective and KOOS scores. RESULTS: The laboratory analysis showed that BMSCs accounted for 0.011% of BMA cells, similar to what had been expected in native bone marrow. The paracrine activity of BMA was able to reduce in vitro the catabolic response of human chondrocyte, as shown by the decrease in metalloproteases concentration and increase in anti-inflammatory mediators. Moreover, the clinical evaluation showed significant improvements in all scores adopted, with stable results up to two years. CONCLUSION: The present data showed the effectiveness of the study device to harvest pure bone marrow with minimal peripheral blood contamination. The relevant content of MSCs resulted in the ability to counteract the catabolic cascade through a paracrine action. The clinical outcomes in patients affected by unicompartmental knee OA were encouraging in terms of pain reduction and functional improvement up to mid-term evaluation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Adulto , Medula Óssea , Células da Medula Óssea , Humanos , Injeções Intra-Articulares , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Osteoartrite do Joelho/terapia , Projetos Piloto , Resultado do Tratamento
8.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555578

RESUMO

Bone-marrow-mesenchymal-stromal-cells (BMSCs)- and platelet-rich-plasma (PRP)-based therapies have shown potential for treating osteoarthritis (OA). Recently, the combination of these two approaches was proposed, with results that overcame those observed with the separate treatments, indicating a possible role of PRP in ameliorating BMSCs' regenerative properties. Since a molecular fingerprint of BMSCs cultivated in the presence of PRP is missing, the aim of this study was to characterize the secretome in terms of soluble factors and extracellular-vesicle (EV)-embedded miRNAs from the perspective of tissues, pathways, and molecules which frame OA pathology. One hundred and five soluble factors and one hundred eighty-four EV-miRNAs were identified in the PRP-treated BMSCs' secretome, respectively. Several soluble factors were related to the migration of OA-related immune cells, suggesting the capacity of BMSCs to attract lympho-, mono-, and granulocytes and modulate their inflammatory status. Accordingly, several EV-miRNAs had an immunomodulating role at both the single-factor and cell level, together with the ability to target OA-characterizing extracellular-matrix-degrading enzymes and cartilage destruction pathways. Overall, anti-inflammatory and protective signals far exceeded inflammation and destruction cues for cartilage, macrophages, and T cells. This study demonstrates that BMSCs cultivated in the presence of PRP release therapeutic molecules and give molecular ground for the use of this combined and innovative therapy for OA treatment.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Plasma Rico em Plaquetas , Humanos , Secretoma , Osteoartrite/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Anti-Inflamatórios/metabolismo , Células-Tronco Mesenquimais/metabolismo , Plasma Rico em Plaquetas/metabolismo
9.
Connect Tissue Res ; 62(5): 570-579, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32921180

RESUMO

AIM OF THE STUDY: Tendons are exposed to mechanical stress constantly during movements and thus they are frequently subjected to injuries. Rotator cuff tears are common musculoskeletal disorders, mainly involving the supraspinatus tendon. The characterization of the tenocytes derived from this tendon and the comparison to cells isolated from the long head of the biceps tendon obtained from donors affected by rotator cuff disease may improve the knowledge of the cellular mechanisms involved in the initiation and progression of the pathology. Thus, the aim of the present study was to characterize and compare donor-matched human tendon cells (TCs) isolated from the long head of the biceps (LHB-TCs) and the supraspinatus tendons (SSP-TCs) of patients affected by rotator cuff tears. METHODS: donor-matched LHB-TCs and SSP-TCs were isolated and cultured up to passage 3. Phenotypic appearance, metabolic activity, DNA content, production of soluble mediators (IL-1Ra, IL-1ß, IL-6, and VEGF) and gene expression of tendon markers (SCX, COL1A1, COL3A1), inflammatory (PTGS2), and catabolic enzymes (MMP-1, MMP-3) were evaluated. RESULTS: LHB-TCs showed an elongated fibroblast-like shape, while SSP-TCs appeared irregular with jagged membrane. SSP-TCs gene expression revealed an augmented production of PTGS2, a marker of inflammation, whereas they produced a reduced amount of IL-6, in respect to LHB-TCs. CONCLUSION: SSP-TCs showed higher cellular stress and expression of inflammatory markers with respect to donor-matched LHB-TCs, suggesting that addressing the physio-pathological state of supraspinatus tendon cells during treatment of rotator cuff tears could favor tissue healing and possibly prevent relapses.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Biomarcadores , Ciclo-Oxigenase 2 , Humanos , Interleucina-6 , Tendões
10.
Nucleic Acids Res ; 47(10): 5325-5340, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30937446

RESUMO

Stem cell identity and plasticity are controlled by master regulatory genes and complex circuits also involving non-coding RNAs. Circular RNAs (circRNAs) are a class of RNAs generated from protein-coding genes by backsplicing, resulting in stable RNA structures devoid of free 5' and 3' ends. Little is known of the mechanisms of action of circRNAs, let alone in stem cell biology. In this study, for the first time, we determined that a circRNA controls mesenchymal stem cell (MSC) identity and differentiation. High-throughput MSC expression profiling from different tissues revealed a large number of expressed circRNAs. Among those, circFOXP1 was enriched in MSCs compared to differentiated mesodermal derivatives. Silencing of circFOXP1 dramatically impaired MSC differentiation in culture and in vivo. Furthermore, we demonstrated a direct interaction between circFOXP1 and miR-17-3p/miR-127-5p, which results in the modulation of non-canonical Wnt and EGFR pathways. Finally, we addressed the interplay between canonical and non-canonical Wnt pathways. Reprogramming to pluripotency of MSCs reduced circFOXP1 and non-canonical Wnt, whereas canonical Wnt was boosted. The opposing effect was observed during generation of MSCs from human pluripotent stem cells. Our results provide unprecedented evidence for a regulatory role for circFOXP1 as a gatekeeper of pivotal stem cell molecular networks.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/metabolismo , RNA , Proteínas Repressoras/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Citoplasma/metabolismo , Receptores ErbB/metabolismo , Exorribonucleases/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Mesoderma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , RNA Circular , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Células-Tronco/citologia , Proteínas Wnt/metabolismo
11.
Int Orthop ; 45(2): 419-426, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32642826

RESUMO

PURPOSE: Rotator cuff tears are common musculoskeletal disorders, and surgical repair is characterized by a high rate of re-tear. Regenerative medicine strategies, in particular mesenchymal stem cell-based therapies, have been proposed to enhance tendon healing and reduce the re-tear rate. Autologous microfragmented adipose tissue (µFAT) allows for the clinical application of cell therapies and showed the ability to improve tenocyte proliferation and viability in previous in vitro assessments. The hypothesis of this study is that µFAT paracrine action would reduce the catabolic and inflammatory marker expression in tendon cells (TCs) derived from injured supraspinatus tendon (SST). METHODS: TCs derived from injured SST were co-cultured with autologous µFAT in transwell for 48 h. Metabolic activity, DNA content, the content of soluble mediators in the media, and the gene expression of tendon-specific, inflammatory, and catabolic markers were analyzed. RESULTS: µFAT-treated TCs showed a reduced expression of PTGS2 and MMP-3 with respect to untreated controls. Increased IL-1Ra, VEGF, and IL-6 content were observed in the media of µFAT-treated samples, in comparison with untreated TCs. CONCLUSION: µFAT exerted an anti-inflammatory action on supraspinatus tendon cells in vitro through paracrine action, resulting in the reduction of catabolic and inflammatory marker expression. These observations potentially support the use of µFAT as adjuvant therapy in the treatment of rotator cuff disease.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Tecido Adiposo , Humanos , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Ruptura , Tendões
12.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673509

RESUMO

Fusion cages composed of titanium and its alloys are emerging as valuable alternative to standard polyetheretherketone (PEEK) ones routinely used in cervical and lumbar spine surgery. Aim of this study was to evaluate osteo-inductive and osteo-conductive ability of an innovative trabecular titanium (T-Ti) scaffold on human mesenchymal stem cells (hMSCs), in both absence and presence of biochemical osteogenic stimuli. Same abilities were assessed on PEEK and standard 2D plastic surface, the latter meant as gold-standard for in vitro differentiation studies. hMSCs adhered and colonized both T-Ti and PEEK scaffolds. In absence of osteogenic factors, T-Ti triggered osteogenic induction of MSCs, as demonstrated by alkaline phosphatase activity and calcium deposition increments, while PEEK and standard 2D did not. Addition of osteogenic stimuli reinforced osteogenic differentiation of hMSCs cultured on T-Ti in a significantly higher manner with respect to standard 2D plastic culture surfaces, whereas PEEK almost completely abolished the process. T-Ti driven differentiation towards osteoblasts was confirmed by gene and marker expression analyses, even in absence of osteogenic stimuli. These results clearly indicate superior in vitro osteo-inductive and osteo-conductive capacity of T-Ti compared to PEEK, and make ground for further studies supporting the use of T-Ti cages to improve bone fusion.


Assuntos
Cetonas , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Polietilenoglicóis , Alicerces Teciduais/química , Titânio , Adulto , Benzofenonas , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Polímeros , Próteses e Implantes
13.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502510

RESUMO

Vitamin D showed a protective effect on intervertebral disc degeneration (IDD) although conflicting evidence is reported. An explanation could be due to the presence of the FokI functional variant in the vitamin D receptor (VDR), observed as associated with spine pathologies. The present study was aimed at investigating-through high-throughput gene and protein analysis-the response of human disc cells to vitamin D, depending on the VDR FokI variants. The presence of FokI VDR polymorphism was determined in disc cells from patients with discopathy. 1,25(OH)2D3 was administered to the cells with or without interleukin 1 beta (IL-1ß). Microarray, protein arrays, and multiplex protein analysis were performed. In both FokI genotypes (FF and Ff), vitamin D upregulated metabolic genes of collagen. In FF cells, the hormone promoted the matrix proteins synthesis and a downregulation of enzymes involved in matrix catabolism, whereas Ff cells behaved oppositely. In FF cells, inflammation seems to hamper the synthetic activity mediated by vitamin D. Angiogenic markers were upregulated in FF cells, along with hypertrophic markers, some of them upregulated also in Ff cells after vitamin D treatment. Higher inflammatory protein modulation after vitamin D treatment was observed in inflammatory condition. These findings would help to clarify the clinical potential of vitamin D supplementation in patients affected by IDD.


Assuntos
Disco Intervertebral/efeitos dos fármacos , Receptores de Calcitriol/genética , Vitamina D/farmacologia , Adulto , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Proteômica/métodos , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Vitaminas/farmacologia
14.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111031

RESUMO

Mesenchymal stem cells (MSCs) derived from adipose tissue and used either as expanded cells or minimally manipulated cell preparations showed positive clinical outcomes in regenerative medicine approaches based on tissue restoration and inflammation control, like in osteoarthritis (OA). Recently, MSCs' healing capacity has been ascribed to the large array of soluble factors, including soluble cytokines/chemokines and miRNAs conveyed within extracellular vesicles (EVs). Therefore, in this study, 200 secreted cytokines, chemokines and growth factors via ELISA, together with EV-embedded miRNAs via high-throughput techniques, were scored in adipose-derived MSCs (ASCs) cultivated under inflammatory conditions, mimicking OA synovial fluid. Both factors (through most abundantly expressed TIMP1, TIMP2, PLG and CTSS) and miRNAs (miR-24-3p, miR-222-3p and miR-193b-3p) suggested a strong capacity for ASCs to reduce matrix degradation activities, as those activated in OA cartilage, and switch synovial macrophages, often characterized by an M1 inflammatory polarization, towards an M2 phenotype. Moreover, the crucial importance of selecting the target tissue is discussed, showing how a focused search may greatly improve potency prediction and explain clinical outcomes. In conclusion, herein presented data shed light about the way ASCs regulate cell homeostasis and regenerative pathways in an OA-resembling environment, therefore suggesting a rationale for the use of MSC-enriched clinical products, such as stromal vascular fraction and microfragmented adipose tissue, in joint pathologies.


Assuntos
Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoartrite do Joelho/terapia , Cicatrização/fisiologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Líquido Sinovial/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Cicatrização/genética
15.
Cytotherapy ; 21(12): 1179-1197, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784241

RESUMO

Osteoarthritis (OA) is a debilitating, degenerative joint disease characterized by progressive destruction of articular cartilage. Given the poor repair capacity of articular cartilage and the associated local destructive immune/inflammatory responses involving all joint structures, OA frequently ends up as a "whole joint failure" requiring prosthetic replacement. Current pharmacological efforts, belatedly started, mainly aim at symptomatic pain relief, underscoring the need for novel therapeutic schemes designed to modify the course of the disease. Mesenchymal stem cell (MSC)-based therapy has gained significant interest, sparking the design of multiple trials proving safety while providing promising preliminary efficacy results. MSCs possess 'medicinal signaling cell' properties related to their immunomodulatory and anti-inflammatory effects, which induce the establishment of a pro-regenerative microenvironment at the injured tissue. Those trophic effects are paralleled by the long-established chondroprogenitor capacity that can be harnessed to ex vivo fabricate engineered constructs to repair damaged articular cartilage. The present review focuses on these two aspects of the use of MSCs for articular cartilage damage, namely, cell therapy and tissue engineering, providing information on their use criteria, advancements, challenges and strategies to overcome them.


Assuntos
Cartilagem Articular/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/terapia , Engenharia Tecidual/tendências , Animais , Regeneração Óssea/fisiologia , Cartilagem Articular/fisiopatologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoartrite/fisiopatologia , Regeneração/fisiologia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Engenharia Tecidual/métodos
16.
Knee Surg Sports Traumatol Arthrosc ; 27(6): 1717-1725, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30291395

RESUMO

Implantation of allograft tissues has massively grown over the last years, especially in the fields related to sports medicine. Beside the fact that often no autograft option exists, autograft related disadvantages as donor-site morbidity and prolonged operative time are drastically reduced with allograft tissues. Despite the well documented clinical success for bone allograft procedures, advances in tissue engineering raised the interest in meniscus, osteochondral and ligament/tendon allografts. Notably, their overall success rates are constantly higher than 80%, making them a valuable treatment option in orthopaedics, especially in knee surgery. Complications reported for allografting procedures are a small risk of disease transmission, immunologic rejection, and decreased biologic incorporation together with nonunion at the graft-host juncture and, rarely, massive allograft resorption. Although allografting is a successful procedure, improved techniques and biological knowledge to limit these pitfalls and maximize graft incorporation are needed. A basic understanding of the biologic processes that affect the donor-host interactions and eventual incorporation and remodelling of various allograft tissues is a fundamental prerequisite for their successful clinical use. Further, the importance of the interaction of immunologic factors with the biologic processes involved in allograft incorporation has yet to be fully dissected. Finally, new tissue engineering techniques and use of adjunctive growth factors, cell based and focused gene therapies may improve the quality and uniformity of clinical outcomes. The aim of this review is to shed light on the biology of meniscus, osteochondral and ligament/tendon allograft incorporation and how collection and storage techniques may affect graft stability and embodiment.Level of evidence V.


Assuntos
Aloenxertos/fisiologia , Articulação do Joelho/cirurgia , Aloenxertos/imunologia , Transplante Ósseo , Cartilagem/citologia , Cartilagem/transplante , Condrócitos/transplante , Citocinas/metabolismo , Humanos , Articulação do Joelho/metabolismo , Metaloproteinases da Matriz/metabolismo , Menisco/transplante , Regeneração , Tendões/transplante , Transplante Homólogo
17.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841483

RESUMO

Osteoarthritis (OA) leads to chronic pain and disability, and traditional conservative treatments are not effective in the long term. The intra-articular injection of mesenchymal stem cells (MSCs) is considered a novel therapy for OA whose efficacy mainly relies on the adaptive release of paracrine molecules which are either soluble or extracellular vesicles (EVs) embedded. The correct quantification of EV-miRNAs using reliable reference genes (RGs) is a crucial step in optimizing this future therapeutic cell-free approach. The purpose of this study is to rate the stabilities of literature-selected proposed RGs for EV-miRNAs in adipose derived-MSCs (ASCs). EVs were isolated by ultracentrifugation from ASCs cultured with or without inflammatory priming mimicking OA synovial fluid condition. Expression of putative RGs (let-7a-5p, miR-16-5p, miR-23a-3p, miR-26a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, U6 snRNA) was scored by using the algorithms geNorm, NormFinder, BestKeeper and ΔCt method. miR-16a-5p/miR-23a-3p yielded the most stable RGs, whereas let-7a-5p/miR-425-5p performed poorly. Outcomes were validated by qRT-PCR on miR-146a-5p, reported to be ASC-EVs enriched and involved in OA. Incorrect RG selection affected the evaluation of miR-146a-5p abundance and modulation by inflammation, with both values resulting strongly donor-dependent. Our findings demonstrated that an integrated approach of multiple algorithms is necessary to identify reliable, stable RGs for ASC-EVs miRNAs evaluation. A correct approach would increase the accuracy of embedded molecule assessments aimed to develop therapeutic strategies for the treatment of OA based on EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais/normas , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Osteoartrite/terapia , Tecido Adiposo/citologia , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/classificação , Pessoa de Meia-Idade , Padrões de Referência
18.
Int J Mol Sci ; 20(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609804

RESUMO

Mesenchymal Stem Cells (MSCs) and tissue-specific progenitors have been proposed as useful tools for regenerative medicine approaches in bone, cartilage and tendon-related pathologies. The differentiation of cells towards the desired, target tissue-specific lineage has demonstrated advantages in the application of cell therapies and tissue engineering. Unlike osteogenic and chondrogenic differentiation, there is no consensus on the best tenogenic induction protocol. Many growth factors have been proposed for this purpose, including BMP-12, b-FGF, TGF-ß3, CTGF, IGF-1 and ascorbic acid (AA). In this study, different combinations of these growth factors have been tested in the context of a two-step differentiation protocol, in order to define their contribution to the induction and maintenance of tendon marker expression in adipose tissue and bone marrow derived MSCs and tendon cells (TCs), respectively. Our results demonstrate that TGF-ß3 is the main inducer of scleraxis, an early expressed tendon marker, while at the same time inhibiting tendon markers normally expressed later, such as decorin. In contrast, we find that decorin is induced by BMP-12, b-FGF and AA. Our results provide new insights into the effect of different factors on the tenogenic induction of MSCs and TCs, highlighting the importance of differential timing in TGF-ß3 stimulation.


Assuntos
Ácido Ascórbico/farmacologia , Biomarcadores/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Transformador beta3/farmacologia , Tecido Adiposo/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/citologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Meios de Cultura/química , Decorina/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Tendões/citologia , Tendões/efeitos dos fármacos , Tendões/metabolismo
19.
J Cell Biochem ; 119(6): 4855-4866, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29363823

RESUMO

Tenofovir disoproxil fumarate (TDF) is an antiretroviral drug commonly used for the management of Human Immunodeficiency Virus (HIV) in highly active antiretroviral therapy (HAART) and of chronic Hepatitis B Virus (HBV) infections. Long-term TDF-treated subjects present decrease of bone mineral density and rarely severe osteomalacia. Although these adverse effects have been attributed to the impaired proximal tubule function, a possible direct involvement of TDF on osteoblasts should be taken into account. The aim of this study was to evaluate whether sodium phosphate transporters NPT2A (sodium-dependent phosphate transport protein 2A), NPT2C (sodium-dependent phosphate transport protein 2C), PIT1 (sodium-dependent phosphate transporter 1), and PIT2 (sodium-dependent phosphate transporter 2) were expressed in primary human osteoblasts (HOBs), whether their expression was related to HOBs differentiation and whether TDF could affect mineralization and gene expression. PIT1 and PIT2 were expressed under proliferating conditions and increased after induction of mineralization, while NPT2A and NPT2C were almost undetectable. In HOBs TDF exposure induced a significant dose-dependent decrease in mineralization. Moreover, TDF caused a reduction of COL1A1 and of ATF4 expression in differentiated HOBs. In summary, HOBs do not express NPT2A and NPT2C and do express PIT1 and PIT2, suggesting a role of these two latter in human osteoblast mineralization. TDF impairs osteoblast mineralization, confirming a direct negative effect on bone. Therefore, in clinical practice, bone damage must be suspected and evaluated also in patients receiving TDF without kidney function alterations.


Assuntos
Adenina/análogos & derivados , Antirretrovirais/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Osteoblastos/metabolismo , Ácidos Fosforosos/farmacologia , Pró-Fármacos/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato/biossíntese , Adenina/farmacologia , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoblastos/citologia
20.
Stem Cells ; 35(4): 1093-1105, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28164431

RESUMO

Mesenchymal stem cells (MSC) are multipotent cells able to differentiate into several cell types, hence providing cell reservoirs for therapeutic applications. The absence of detectable MSC homing at injury sites suggests that paracrine functions could, at least in part, be mediated by extracellular vesicles (EVs); EVs are newly identified players that are studied mainly as predictive or diagnostic biomarkers. Together with their clinical interests, EVs have recently come to the fore for their role in cell-to-cell communication. In this context, we investigated gene-based communication mechanisms in EVs generated by bone marrow and umbilical cord blood MSC (BMMSC and CBMSC, respectively). Both MSC types released vesicles with similar physical properties, although CBMSC were able to secrete EVs with faster kinetics. A pattern of preferentially incorporated EV transcripts was detected with respect to random internalization from the cytosol, after a validated normalization procedure was established. In the paradigm where EVs act as bioeffectors educating target cells, we demonstrated that kidney tubular cells lacking IL-10 expression and exposed to BMMSC-EVs and CBMSC-EVs acquired the IL-10 mRNA, which was efficiently translated into the corresponding protein. These findings suggest that horizontal mRNA transfer through EVs is a new mechanism in the MSC restoring ability observed in vivo that is here further demonstrated in an in vitro rescue model after acute cisplatin injury of tubular cells. Stem Cells 2017;35:1093-1105.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regiões 3' não Traduzidas/genética , Vesículas Extracelulares/ultraestrutura , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Cinética , Células-Tronco Mesenquimais/ultraestrutura , Modelos Biológicos , Compostos Orgânicos/metabolismo , Biossíntese de Proteínas , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Coloração e Rotulagem , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA