Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 38, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321428

RESUMO

BACKGROUND: Hemodialysis is a life-saving treatment used to eliminate toxins and metabolites from the body during poisoning. Despite its effectiveness, there needs to be more research on this method precisely, with most studies focusing on specific poisoning. This study aims to bridge the existing knowledge gap by developing a machine-learning prediction model for forecasting the prognosis of the poisoned patient undergoing hemodialysis. METHODS: Using a registry database from 2016 to 2022, this study conducted a retrospective cohort study at Loghman Hakim Hospital. First, the relief feature selection algorithm was used to identify the most important variables influencing the prognosis of poisoned patients undergoing hemodialysis. Second, four machine learning algorithms, including extreme gradient boosting (XGBoost), histgradient boosting (HGB), k-nearest neighbors (KNN), and adaptive boosting (AdaBoost), were trained to construct predictive models for predicting the prognosis of poisoned patients undergoing hemodialysis. Finally, the performance of paired feature selection and machine learning (ML) algorithm were evaluated to select the best models using five evaluation metrics including accuracy, sensitivity, specificity the area under the curve (AUC), and f1-score. RESULT: The study comprised 980 patients in total. The experimental results showed that ten variables had a significant influence on prognosis outcomes including age, intubation, acidity (PH), previous medical history, bicarbonate (HCO3), Glasgow coma scale (GCS), intensive care unit (ICU) admission, acute kidney injury, and potassium. Out of the four models evaluated, the HGB classifier stood out with superior results on the test dataset. It achieved an impressive mean classification accuracy of 94.8%, a mean specificity of 93.5 a mean sensitivity of 94%, a mean F-score of 89.2%, and a mean receiver operating characteristic (ROC) of 92%. CONCLUSION: ML-based predictive models can predict the prognosis of poisoned patients undergoing hemodialysis with high performance. The developed ML models demonstrate valuable potential for providing frontline clinicians with data-driven, evidence-based tools to guide time-sensitive prognosis evaluations and care decisions for poisoned patients in need of hemodialysis. Further large-scale multi-center studies are warranted to validate the efficacy of these models across diverse populations.


Assuntos
Venenos , Humanos , Estudos Retrospectivos , Prognóstico , Diálise Renal , Algoritmos
2.
Daru ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771458

RESUMO

BACKGROUND: Treatment management for opioid poisoning is critical and, at the same time, requires specialized knowledge and skills. This study was designed to develop and evaluate machine learning algorithms for predicting the maintenance dose and duration of hospital stay in opioid poisoning, in order to facilitate appropriate clinical decision-making. METHOD AND RESULTS: This study used artificial intelligence technology to predict the maintenance dose and duration of administration by selecting clinical and paraclinical features that were selected by Pearson correlation (filter method) (Stage 1) and then the (wrapper method) Recursive Feature Elimination Cross-Validated (RFECV) (Stage2). The duration of administration was divided into two categories: A (which includes a duration of less than or equal to 24 h of infusion) and B (more than 24 h of naloxone infusion). XGBoost algorithm model with an accuracy rate of 91.04%, a prediction rate of 91.34%, and a sensitivity rate of 91.04% and area under the Curve (AUC) 0.97 was best model for classification patients. Also, the best maintenance dose of naloxone was obtained with XGBoost algorithm with R2 = 0.678. Based on the selected algorithm, the most important features for classifying patients for the duration of treatment were bicarbonate, respiration rate, physical sign, The partial pressure of carbon dioxide (PCO2), diastolic blood pressure, pulse rate, naloxone bolus dose, Blood Creatinine(Cr), Body temperature (T). The most important characteristics for determining the maintenance dose of naloxone were physical signs, bolus dose of 4.5 mg/kg, Glasgow Coma Scale (GCS), Creatine Phosphokinase (CPK) and intensive care unit (ICU) add. CONCLUSION: A predictive model can significantly enhance the decision-making and clinical care provided by emergency physicians in hospitals and medical settings. XGBoost was found to be the superior model.

3.
Toxicology ; 504: 153770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458534

RESUMO

Methanol poisoning is a global public health concern, especially prevalent in developing nations. This study focuses on predicting the severity of methanol intoxication using machine learning techniques, aiming to improve early identification and prognosis assessment. The study, conducted at Loghman Hakim Hospital in Tehran, Iran. The data pertaining to individuals afflicted with methanol poisoning was retrieved retrospectively and divided into training and test groups at a ratio of 70:30. The selected features were then inputted into various machine learning methods. The models were implemented using the Scikit-learn library in the Python programming language. Ultimately, the efficacy of the developed models was assessed through ten-fold cross-validation techniques and specific evaluation criteria, with a confidence level of 95%. A total number of 897 patients were included and divided in three groups including without sequel (n = 573), with sequel (n = 234), and patients who died (n = 90). The two-step feature selection was yielded 43 features in first step and 23 features in second step. In best model (Gradient Boosting Classifier) test dataset metric by 32 features younger age, higher methanol ingestion, respiratory symptoms, lower GCS scores, type of visual symptom, duration of therapeutic intervention, ICU admission, and elevated CPK levels were among the most important features predicting the prognosis of methanol poisoning. The Gradient Boosting Classifier demonstrated the highest predictive capability, achieving AUC values of 0.947 and 0.943 in the test dataset with 43 and 23 features, respectively. This research introduces a machine learning-driven prognostic model for methanol poisoning, demonstrating superior predictive capabilities compared to traditional statistical methods. The identified features provide valuable insights for early intervention and personalized treatment strategies.


Assuntos
Aprendizado de Máquina , Metanol , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Prognóstico , Metanol/intoxicação , Pessoa de Meia-Idade , Irã (Geográfico)/epidemiologia , Adulto Jovem , Intoxicação/diagnóstico , Intoxicação/terapia
4.
Sci Rep ; 14(1): 15751, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977750

RESUMO

The need for intubation in methanol-poisoned patients, if not predicted in time, can lead to irreparable complications and even death. Artificial intelligence (AI) techniques like machine learning (ML) and deep learning (DL) greatly aid in accurately predicting intubation needs for methanol-poisoned patients. So, our study aims to assess Explainable Artificial Intelligence (XAI) for predicting intubation necessity in methanol-poisoned patients, comparing deep learning and machine learning models. This study analyzed a dataset of 897 patient records from Loghman Hakim Hospital in Tehran, Iran, encompassing cases of methanol poisoning, including those requiring intubation (202 cases) and those not requiring it (695 cases). Eight established ML (SVM, XGB, DT, RF) and DL (DNN, FNN, LSTM, CNN) models were used. Techniques such as tenfold cross-validation and hyperparameter tuning were applied to prevent overfitting. The study also focused on interpretability through SHAP and LIME methods. Model performance was evaluated based on accuracy, specificity, sensitivity, F1-score, and ROC curve metrics. Among DL models, LSTM showed superior performance in accuracy (94.0%), sensitivity (99.0%), specificity (94.0%), and F1-score (97.0%). CNN led in ROC with 78.0%. For ML models, RF excelled in accuracy (97.0%) and specificity (100%), followed by XGB with sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%). Overall, RF and XGB outperformed other models, with accuracy (97.0%) and specificity (100%) for RF, and sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%) for XGB. ML models surpassed DL models across all metrics, with accuracies from 93.0% to 97.0% for DL and 93.0% to 99.0% for ML. Sensitivities ranged from 98.0% to 99.37% for DL and 93.0% to 99.0% for ML. DL models achieved specificities from 78.0% to 94.0%, while ML models ranged from 93.0% to 100%. F1-scores for DL were between 93.0% and 97.0%, and for ML between 96.0% and 98.27%. DL models scored ROC between 68.0% and 78.0%, while ML models ranged from 84.0% to 96.08%. Key features for predicting intubation necessity include GCS at admission, ICU admission, age, longer folic acid therapy duration, elevated BUN and AST levels, VBG_HCO3 at initial record, and hemodialysis presence. This study as the showcases XAI's effectiveness in predicting intubation necessity in methanol-poisoned patients. ML models, particularly RF and XGB, outperform DL counterparts, underscoring their potential for clinical decision-making.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Metanol , Humanos , Metanol/intoxicação , Masculino , Feminino , Aprendizado Profundo , Intubação Intratraqueal/métodos , Irã (Geográfico) , Adulto , Pessoa de Meia-Idade , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA