Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Res ; 250: 118467, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354887

RESUMO

In the aftermath of the Fukushima Daiichi Nuclear Power Plant accident, a pioneering large-scale decontamination project was initiated, aiming to enable the return of evacuees. This project, the first of its kind in human history, involved the transportation of soils collected during decontamination to interim storage facilities. Before recycling or disposal, these soils undergo processes like volume reduction. However, there's a need for innovative methods to reduce volume effectively and treat secondary wastes more efficiently. The current study explores the impact of a dispersant, sodium hexametaphosphate (SHMP), on the behavior of radiocesium (r-Cs: 137Cs) dynamics in different size fractions of radioactively contaminated soils from Fukushima. The solid-phase speciation analysis of Fukushima soils validated that at least 50% of the 137Cs or other minerals are associated with difficult-to-extract soil phases. Nonetheless, the low 137Cs/133Cs ratio in corresponding soil phases implies a slower r-Cs fixation mechanism. The wet-sieving of r-Cs contaminated soil fraction, < 2 mm, with SHMP, resulted in different soil subfractions (2000-212, 212-53, and < 53 µm). Following SHMP treatment, dispersion of > 92% of 137Cs associated with < 212 µm soil size fractions was observed. The migration of 137Cs towards smaller soil size fractions can be attributed to either SHMP-induced cation exchange or the formation of polyvalent complexes involving SHMP and soil minerals. The condensation of 137Cs in < 212 µm, as induced by SHMP, enabled the subsequent reuse of the larger soil fraction (> 212 µm), which was less contaminated. This study provides a new perspective on the effects of dispersants and contributes to a better understanding of the complex interactions among organic carbon, 137Cs, monovalent and polyvalent cations, and soil functional groups concerning the volume reduction of soils contaminated with r-Cs.


Assuntos
Radioisótopos de Césio , Acidente Nuclear de Fukushima , Poluentes Radioativos do Solo , Radioisótopos de Césio/análise , Poluentes Radioativos do Solo/análise , Solo/química , Monitoramento de Radiação/métodos , Descontaminação/métodos , Japão
2.
J Environ Manage ; 346: 118943, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748284

RESUMO

Ongoing global sustainable development and underground space utilization projects have inadvertently exposed many excavated soils naturally contaminated with geogenic arsenic (As). Recent investigations have revealed that As in certain excavated soils, especially those originating from deep construction projects, has exceeded regulatory limits, threatening the environment and human health. While numerous remediation techniques exist for treating As-contaminated soil, the unique characteristics of geogenic As contamination in excavated soil require specific measures when leachable As content surpasses established regulatory limits. Consequently, several standard leaching tests have been developed globally to assess As leaching from contaminated soil. However, a comprehensive comparative analysis of these methods and their implementation in contaminated excavated soils remains lacking. Furthermore, the suitability and efficacy of most conventional and advanced techniques for remediating As-contaminated excavated soils remained unexplored. Therefore, this study critically reviews relevant literature and summarize recent research findings concerning the management and mitigation of geogenic As in naturally contaminated excavated soil. The objective of this study was to outline present status of excavated soil globally, the extent and mode of As enrichment, management and mitigation approaches for As-contaminated soil, global excavated soil recycling strategies, and relevant soil contamination countermeasure laws. Additionally, the study provides a concise overview and comparison of standard As leaching tests developed across different countries. Furthermore, this review assessed the suitability of prominent and widely accepted As remediation techniques based on their applicability, acceptability, cost-effectiveness, duration, and overall treatment efficiency. This comprehensive review contributes to a more profound comprehension of the challenges linked to geogenic As contamination in excavated soils.

3.
J Environ Manage ; 259: 110018, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32072959

RESUMO

In the study, the dynamics of Sr2+ and geochemically correlated elements (Ca2+, Ba2+, and Y3+) in soil with chelators in the mix (soil to chelator ratio, 1:10; matrix, H2O) were assessed to understand chemical-induced washing remediation of radiogenic waste solids. Specifically, EDTA (2,2',2″,2‴-(ethane-1,2-diyldinitrilo)tetraacetic acid), EDDS (2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid), GLDA (2-[bis(carboxymethyl)amino]pentanedioic acid), and HIDS (2-(1,2-dicarboxyethylamino)-3-hydroxy-butanedioic acid) are chelators that are used as extractants. The effect of solution pH on chelator-induced extractions of the target elements (t-Es: Sr2+, Ca2+, Ba2+, or Y3+) from soil and stability constants of the t-Es complexes with chelators were used to explain the trends and magnitudes in interactions. Pre- and post-extractive solid-phase speciation was used to define the extent of the competence of each chelator in persuading dissolution of t-Es in the soil. The effects of ultrasonic energy, admixtures of biodegradable chelators, and excess chelators in solution (1:20) were also analyzed on the extractive removal of t-Es from soil. The results indicate that the Sr2+ removal with biodegradable chelators significantly exceeded (approximately 70%) when compared to that of environmentally-persistent EDTA at lower solution pHs and a higher soil to chelator ratio (GLDA > HIDS > EDDS ≈ EDTA). However, the extraction of the geochemically related element was significantly lower.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Quelantes , Ácido Edético , Solo , Estrôncio
4.
J Environ Manage ; 240: 374-383, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953991

RESUMO

In Bangladesh, India, and Pakistan the ship breaking (SB) sector dismantles end-of-life ships on open beaches, exposing the environment to the resulting pollution, especially the soil and water. Because SB occurs in the vicinity of other poorly-regulated activities in industrial zones (IZ) in these countries, there is some ambiguity concerning the relative roles played by SB and IZ in the accumulation of hazardous materials in the soil. In the absence of comparative studies, this study investigated the relative levels of soil contamination due to SB or IZ in the same geographic region by taking soil samples from SB and unrelated IZs in Chittagong, Bangladesh. The technogenic input of sixty-four chemical elements into the soil at the SB or IZ were compared with off-site reference values or the natural content of these elements in the Earth's crust and surface. The magnitude of soil contamination by ecotoxic elements, the corresponding bioavailability, and the ecological risks were assessed based on the regulatory reference values (RRVs) and with other approaches using data aggregation. Among the different potentially toxic elements, Cr, Cu, Ni, Pb, and Zn were found to be above the maximum allowable concentration (p < 0.05) in both SB and IZ. Moderate-to-high soil contamination from SB and moderate-to-considerable soil contamination in the IZ were observed. However, the element-bioavailability as ascertained via solid-phase speciation or weak-acid induced leaching, and the evaluation of associated ecological risk both indicated a low hazard quotient for soils from both SB and IZ. The outcome of the current research marked both SB and IZ soils as contaminated but not polluted, yet remediation is suggested. The level of contamination in SB soils was relatively higher than that of IZ. The comparative results presented in this study for the first time will hopefully be useful as a reference for future ecological and geochemical studies concerning the environmental contamination associated with both ship recycling on open beaches and other typical industrial activities.


Assuntos
Metais Pesados , Poluentes do Solo , Bangladesh , Monitoramento Ambiental , Índia , Paquistão , Medição de Risco , Navios , Solo
5.
Environ Sci Pollut Res Int ; 30(19): 54470-54482, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995503

RESUMO

Potentially toxic elements (PTEs) in soils accumulate in plants, obstruct their growth, and pose hazards to the consumer via the food chain. Many kinds of grass, grass-like plants, and other higher plant species have evolved a tolerance to PTEs. Holcus lanatus L., a wild grass, is also tolerant (an excluder) of PTEs, such as arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn). However, the extent of tolerance varies among ecotypes and genotypes. The PTE tolerance mechanism of H. lanatus curtails the typical uptake process and causes a reduced translocation of PTEs from the roots to the shoots, while such a characteristic is useful for contaminated land management. The ecology and response patterns of Holcus lanatus L. to PTEs, along with the associated mechanisms, are reviewed in the current work.


Assuntos
Arsênio , Holcus , Metais Pesados , Poluentes do Solo , Poaceae , Solo , Arsênio/análise , Raízes de Plantas/química , Poluentes do Solo/análise
6.
Environ Sci Pollut Res Int ; 30(43): 98246-98260, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37606771

RESUMO

The growth response and incorporation of As into the Sargassum horneri was evaluated for up to 7 days using either arsenate (As(V)), arsenite (As(III)) or methylarsonate (MMAA(V) and DMAA(V)) at 0, 0.25, 0.5, 1, 2, and 4 µM with various phosphate (P) levels (0, 2.5, 5 and 10 µM). Except As(III), algal chlorophyll fluorescence was almost similar and insignificant, regardless of whether different concentrations of P or As(V) or MMAA(V) or DMAA(V) were provided (p > 0.05). As(III) at higher concentrations negatively affected algal growth rate, though concentrations of all As species had significant effects on growth rate (p < 0.01). Growth studies indicated that toxicity and sensitivity of As species to the algae followed the trend: As(III) > As(V) > MMAA(V) ~ DMAA(V). As bioaccumulation was varied significantly depending on the increasing concentrations of all As species and increasing P levels considerably affected As(V) uptake but no other As species uptake (p < 0.01). The algae accumulated As(V) and As(III) more efficiently than MMAA(V) and DMAA(V). At equal concentrations of As (4 µM) and P (0 µM), the alga was able to accumulate 638.2 ± 71.3, 404.1 ± 70.6, 176.7 ± 19.6, and 205.6 ± 33.2 nM g-1 dry weight of As from As(V), As(III), MMAA(V), and DMAA(V), respectively. The influence of low P levels with increased As(V) concentrations more steeply increased As uptake, but P on other As species did not display similar trends. The algae also showed passive modes for As adsorption of all As species. The maximum adsorption of As (63.7 ± 6.1 nM g-1 dry weight) was found due to 4 µM As(V) exposure, which was 2.5, 7.3, and 6.9 times higher than the adsorption amounts for the same concentration of As(III), MMAA(V), and DMAA(V) exposure, respectively. The bioavailability and accumulation behaviors of As were significantly influenced by P and As species, and this information is essential for As research on marine ecosystems.


Assuntos
Arsênio , Sargassum , Bioacumulação , Disponibilidade Biológica , Ecossistema , Fosfatos
7.
Artigo em Inglês | MEDLINE | ID: mdl-37171725

RESUMO

The current study sought to determine the levels of radioactivity and heavy metal contamination in 22 dried fish samples collected in Chennai, Tamil Nadu. The study found that there were substantial heavy metals concentrations for Pb, Mn, Cr, Co, and Cd. The concentration of heavy metal Pb being alarmingly high (32.85 to 42.09 mg/kg), followed by Cd (2.18 mg/kg to 3.51 mg/kg) than the permissible limit of WHO (2.17 mg/kg) for Pb and (0.05 mg/kg) for Cd. In terms of radioactivity, the gross alpha activity in the dried fish samples ranged 6.25 ± 0.12 to 48.21 ± 0.11 Bg/kg with an average of 20.35 Bg/kg and with a gross beta activity from 6.48 ± 0.02 to 479.47 ± 0.65 Bg/kg, for an average of 136.83 Bg/kg. The study found that the internal radiation dose that people receive upon consuming the fish species Sphyraena obtusata, Rachycentron canadum, Lepidocephalichthys thermalis, Synodontidae, Carangoides malabaricus, Sardina pilchardus, Scomberomorus commerson, Sillago sihama, Gerres subfasciatus, and Amblypharyngodon mola is above the ICRP-recommended limit of less than 1 mSv/year. Annual gonadal dose equivalent (AGDE) and total excessive lifetime cancer risk (ELCR) ranged 0.488 µSv year-1 and 0.004 µSv year-1 respectively, the values of AGDE being higher than the global average value. The findings of the study indicate that the analyzed dried fish samples are contaminated with Pb and Cd, which shall pose cancer risk to the consumers as a result.

8.
Environ Sci Pollut Res Int ; 30(52): 112052-112070, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824052

RESUMO

Excavated debris (soil and rock) contaminated with geogenic arsenic (As) is an increasing concern for regulatory organizations and construction stakeholders. Chelator-assisted soil flushing is a promising method for practical on-site remediation of As-contaminated soil, offering technical, economic, and environmental benefits. Ethylenediaminetetraacetic acid (EDTA) is the most prevalent chelator used for remediating As-contaminated soil. However, the extensive environmental persistence and potential toxicity of EDTA necessitate the exploration of eco-compliant alternatives. In this study, the feasibility of the conventional flushing method pump-and-treat and two newly designed immersion and sprinkling techniques were evaluated at the laboratory scale (small-scale laboratory experiments) for the on-site treatment of As-contaminated excavated debris. Two biodegradable chelators, L-glutamic acid-N,N'-diacetic acid (GLDA) and 3-hydroxy-2,2'-iminodisuccinic acid (HIDS), were examined as eco-friendly substitutes for EDTA. Additionally, this study highlights a useful post-treatment measure to ensure minimal mobility of residual As in the chelator-treated debris residues. The pump-and-treat method displayed rapid As-remediation (t, 3 h), but it required a substantial volume of washing solution (100 mL g-1). Conversely, the immersion technique demonstrated an excellent As-extraction rate using a relatively smaller washing solution (0.33 mL g-1) and shorter immersion time (t, 3 h). In contrast, the sprinkling technique showed an increased As-extraction rate over an extended period (t, 48 h). Among the chelators employed, the biodegradable chelator HIDS (10 mmol L-1; pH, 3) exhibited the highest As-extraction efficiency. Furthermore, the post-treatment of chelator-treated debris with FeCl3 and CaO successfully reduced the leachable As content below the permissible limit.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Isópodes , Poluentes do Solo , Animais , Arsênio/análise , Ácido Edético/química , Poluentes do Solo/análise , Quelantes/química , Solo/química
9.
J Hazard Mater ; 431: 128562, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248963

RESUMO

The reclamation of geogenic As-contaminated excavated soils as construction additives can reduce the post-disposal impact on the ecosystem and space. Although retaining soil characteristics while reducing contaminant load is a challenging task, washing remediation with biodegradable surfactants or chelators is a promising alternative to non-biodegradable counterparts. In this study, newly synthesized biodegradable surfactants (SDG: sodium N-dodecanoyl-glycinate, SDBA: sodium N-dodecanoyl-ß-alaninate, SDGBH: sodium N-dodecanoyl-α,γ-glutamyl-bis-hydroxyprolinate, SDT: sodium N-dodecanoyl-taurinate, and DCPC: N-dodecyl-3-carbamoyl-pyridinium-chloride) and biodegradable chelators (EDDS: ethylenediamine N,N'-disuccinic acid, GLDA: L-glutamate-N, N'-diacetic acid, and HIDS: 3-hydroxy-2,2'-imino disuccinic acid) are evaluated for the remediation of As-contaminated soil. The operating variables, such as washing duration, solution pH, and surfactant or chelator concentration, are optimized for maximum As extraction. SDT shows the highest As-extraction efficiency irrespective of solution pH and surfactant variants, while HIDS is the superior chelator under acidic or alkaline conditions. A binary blend of SDT and HIDS is evaluated for As extraction under varying operating conditions. The SDT-HIDS binary blend demonstrates 6.9 and 1.6-times higher As-extraction rates than the SDT and HIDS-only washing, respectively, under acidic conditions. The proposed approach with a binary blend of a biodegradable surfactant and chelator is a green solution for recycling As-contaminated excavated soils for geotechnical applications.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Isópodes , Metais Pesados , Poluentes do Solo , Animais , Quelantes , Ecossistema , Metais Pesados/análise , Sódio , Solo , Poluentes do Solo/análise , Tensoativos
10.
J Chromatogr A ; 1658: 462625, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34695663

RESUMO

Radiostrontium (r-Sr: 90Sr) is one of the primary fission products in nuclear power plants and generates liquid radioactive waste when intermixed to the aqueous matrix. Therefore, separation or preconcentration of r-Sr from the aqueous matrices is necessary for environmental monitoring or nuclear forensics. The solid-phase extraction (SPE) approach is prevalently used for r-Sr isolation and to design matrix-specific methods, while generalized SPE-assisted operating protocols are not proposed by far. In the current work, four different SPEs, namely AnaLig Sr-01, Eichrom Sr, Triskem TK100, and Eichrom DGA, were evaluated for selective separation of Sr from aqueous matrices. Operating variables, e.g., solution acidity, washing solvent, eluent-type or volume, loading or elution flow-rate, were varied to optimize the SPEs performance. The objective was to ascertain the operating variables for maximum Sr-separation yield from aqueous environmental samples with the SPEs mentioned above. In addition, the Sr-separation efficiency of SPEs was evaluated by calculating the separation factor (SFSr/M) between Sr and interfering elements to r-Sr (M = Ca, Mg, Ba, or Y), and the Sr-retention capacity of the SPEs was determined. Finally, the optimized operating variables for the evaluated SPEs were used to construct protocols for r-Sr separation from aqueous matrices. Real 90Sr contaminated aqueous samples from the Chernobyl nuclear power plant cooling pond were treated by those protocols, and the results are validated comparing with the IAEA-recommended classical protocol. All the SPEs were able to isolate Sr at varying extents from matrices at the optimum conditions, even at much higher contents of interfering elements. Eichrom Sr or AnaLig Sr-01 showed better Sr-retention capability among the SPEs, while Triskem TK100 showed superiority over other SPEs regarding Sr-selectivity.


Assuntos
Resíduos Radioativos , Extração em Fase Sólida , Monitoramento Ambiental , Solventes , Água
11.
J Chromatogr A ; 1654: 462476, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34438301

RESUMO

The release of radiocesium (r-Cs) into natural aqueous systems is of concern because of its extended solubility as an alkaline metal ion and its facile incorporation into living beings. A technique for the selective separation of Cs from an aqueous matrix using dual solid-phase extraction (SPE) systems in a series is proposed in this paper. The SPEs equipped with chelates (Nobias Chelate-PA1 and Nobias Chelate-PB1), an ion-exchange resin (Nobias Ion SC-1), or macrocycles (MetaSEP AnaLig Cs-01 and MetaSEP AnaLig Cs-02) were evaluated in terms of selectivity and retention/recovery behavior toward Cs and other potentially competing ions (Li, Na, K, Rb, Ba, Ca, Mg, and Sr). The simulated solution of 133Cs, a chemical analog of r-Cs, was used to optimize the separation process. Operating parameters such as pH (3-13), flow rate (0.2-5.0 mL min-1), and elution behavior (HCl, 0.1-5.0 mol L-1) were optimized to ensure maximum removal of Cs from the aqueous matrices. The dual SPE system comprised Nobias Chelate-PB1 that minimized the competing impact of ions, while selective Cs retention was attained with MetaSEP AnaLig Cs-02. The proposed process was verified using real r-Cs-contaminated water from Fukushima, Japan, to observe the quantitative separation and preconcentration of r-Cs from the complex matrices.


Assuntos
Radioisótopos de Césio , Monitoramento Ambiental , Extração em Fase Sólida , Água , Radioisótopos de Césio/análise , Radioisótopos de Césio/isolamento & purificação , Monitoramento Ambiental/métodos , Água/química
12.
J Hazard Mater ; 418: 126308, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329039

RESUMO

Economic and ecological issues motivate the recovery of precious metals (PMs: Ag, Au, Pd, and Pt) from secondary sources. From the viewpoint of eco-friendliness and cost-effectiveness, biomass-based resins are superior to synthetic polymer-based resins for PM recovery. Herein, a detailed comparative study of bio-sorbent dithiocarbamate-modified cellulose (DMC) and synthetic polymer-based commercial resins (Q-10R, Lewatit MonoPlus TP 214, Diaion WA30, and Dowex 1X8) for PM recovery from waste resources was conducted. The performances and applicability of the selected resins were investigated in terms of sorption selectivity, effect of competing anions, sorption isotherms, impact of temperature, and PM extractability from industrial wastes. Although the sorption selectivity toward PMs in acidic solutions by DMC and other resins was comparable, the sorption efficiency of commercial resins was adversely affected by competing anions. The sorption of PMs fitted the Langmuir model for all the studied resins, except Q-10R, which followed the Freundlich model. The maximum sorption capacity of DMC was 2.2-42 times higher than those of the resins. Furthermore, the PM extraction performance of DMC from industrial wastes exceeded that of the commercial resins, with a sorption efficiency ≥99% and a DMC dosage of 5-40 times lower.


Assuntos
Metais , Água , Adsorção , Celulose , Concentração de Íons de Hidrogênio , Cinética
13.
J Hazard Mater ; 410: 124569, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33234400

RESUMO

Recovery of precious metals (PMs: AuIII and PtIV) from waste resources is of high importance due to the environmental concern and imbalance in the supply-demand ratio. A new approach has been explored for the recovery of PM using earlier developed bio-adsorbent, dithiocarbamate-modified cellulose (DMC). The adsorbent exhibits excellent adsorption efficiency (~99%) over a wide range of pH (< 1-6) and high selectivity towards AuIII and PtIV extraction from acidic solutions ([H+]: ≥ 0.2 mol L-1). The adsorption capacity (mmol g-1; AuIII: 5.07, PtIV: 2.41) and rate to reach equilibrium (≤ 30 min) were significantly higher than most of the reported bio-adsorbents. The AuIII or PtIV, after captured in DMC, was subsequently recovered as Au0 and Pt0 (yield > 99%) via incineration. The protocol was verified using real waste samples containing AuIII and PtIV in a mixed matrix of base metal ions, and a quantitative (~100%) and selective extraction of AuIII and PtIV were observed. The proposed technique is more effective and straightforward than the typical adsorption-desorption-reduction based method, because of the advantages like no-use of toxic eluents, and no-addition of any reductants to collect the PMs in elemental form.

14.
Environ Sci Pollut Res Int ; 27(16): 20149-20159, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239402

RESUMO

Waste foundry sand (WFS) from the brass and bronze casting and molding process include various potentially toxic elements (PTEs), such as copper, zinc, tin, and lead. Hence, the utilization of WFS in construction and geotechnical applications evokes environmental concerns due to the rain-induced leaching of PTEs into the groundwater system. The present study investigated the extractive decontamination of WFS using mineral acids, e.g., HCl, H2SO4, or HNO3. Favorable extraction efficiency was achieved with HCl as compared to the other mineral acids, which was further enhanced at high temperatures and increased acid concentrations. The thermodynamic analysis indicated that ≥ 4 mol L-1 of HCl and ≤ 100 °C temperature ensured maximum extraction of PTEs due to the endothermic interactions between the HCl and PTEs. The HCl-treated WFS needed to be rinsed with water to restrict the after treatment elution of PTEs. The hazardous environmental impact of acid-treated WFS was evaluated following the standard leaching test and comparison with legislative recommendations for PTEs, which showed the water-assisted leaching rate of all the PTEs are within the regulatory limits.


Assuntos
Cobre , Resíduos Industriais/análise , Descontaminação , Areia , Dióxido de Silício , Termodinâmica , Zinco
15.
J Chromatogr A ; 1630: 461528, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950813

RESUMO

Chelators, capable of creating soluble complexes with metals, may disrupt the natural speciation of metals in environmental matrices. Detection of environmental speciation of such complexes has remained challenging as obtaining the precise inherent nature of metal-chelator complexes is difficult by using routine techniques. Herein, we report a rapid and sensitive technique for the speciation analysis of complexes of five metal ions (Ni, Pb, Co, Fe and Ca) with two aminopolycarboxylate chelator variants, namely, EDTA (ethylenediaminetetraacetic acid) and EDDS (ethylenediamine-N,N'-disuccinic acid), including the simultaneous quantification of those complexes. EDTA is characterized as environmentally persistent among the chelators used in the current work whereas EDDS is biodegradable. The speciation analysis was performed using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The separation was achieved by using hydrophilic interaction liquid chromatographic column. The effect of various operating parameters on analytes such as mobile-phase composition, buffer concentrations and pH, sample diluents, sample injection volume, and column temperature on the peak shape and sensitivity were systematically optimized. The dilution was the only requirement for preparing the samples for analysis. The average relative uncertainty was 2.4% with the average precision (as RSD, n= 7) of 3.5%. For the metal-EDTA complexes, LOD range was 3 to 76 nmol L-1 with satisfactory recovery from a simulated mix matrix (recovery: 79-97%) and river water by standard addition (recovery: 82-94%). For metal-EDDS complexes, LOD range was 66 to 293 nmol L-1 with recovery from a simulated mix matrix (recovery: 56-97%) and river water by standard addition (recovery: 61-91%). The proposed method will be applicable in speciation analysis and simultaneous detection of metal-chelator complexes from environmental samples.

16.
J Inorg Biochem ; 195: 141-148, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952083

RESUMO

The formation and equilibria of Sr2+, Mg2+, Ca2+, Ba2+, and Y3+ (M) complexes with a mixed-chelator comprising two biodegradable chelators (GLDA, LG, 2-[bis(carboxymethyl)amino] pentanedioic acid; HIDS, LH, 2-(1,2-dicarboxyethylamino)-3-hydroxy-butanedioic acid) in an aqueous matrix was evaluated. The potentiometric measurement results (ionic strength, 0.10 M; temperature, 25 ±â€¯0.1 °C) confirmed the formation of 1:1:1 (M:LG:LH) complexes and the experimental data sets were further used to derive the equilibrium constants for the ternary complexes. The [MHLGLH]5- complex was the dominant ternary complex with Sr2+, Mg2+, Ca2+, and Ba2+, while Y3+ formed [M(OH)2LGLH]7- as the principal ternary species. The trend in the overall formation constants of the MLmix (Lmix, LG:LH = 1:1) complexes was in the order: Y3+ > Ca2+ > Mg2+ > Sr2+ > Ba2+. The ternary complexation trend was interpreted using the corresponding atomic radii and solution-phase electronegativities of the elements. The modes of interaction between the chelators and cations in the MLmix systems were subsequently deduced, and evaluated by using Gaussian 16W program. The relative stabilities of the ternary complexes (ΔlogK) were interpreted by comparison with the stabilities of the corresponding binaries, with negative ΔlogK values observed for all the MLmix complexes.


Assuntos
Ácido Aspártico/análogos & derivados , Butanóis/química , Quelantes/química , Glutamatos/química , Glicina/análogos & derivados , Metais/química , Succinatos/química , Bário/química , Cálcio/química , Glicina/química , Magnésio/química , Estrôncio/química , Ítrio/química
17.
Chemosphere ; 228: 117-127, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31026632

RESUMO

Algae accumulate and metabolize arsenic (As) and facilitate cycling and speciation of As in seawater. The laboratory-controlled macroalgal cultures were exposed to different molar ratios of As(V) and phosphate (P) in seawater for evaluating the uptake and metabolism of As, as a function of As(V) detoxification through biotransformation. Chlorophyll fluorescence of algal species was not significantly affected by the culture conditions (p > 0.05). Addition of 10 µM P positively reduce As stress, but different As(V)/P ratios significantly affect the growth rate (p < 0.05). Algae readily accumulated As(V) after the inoculation, transformed intracellularly, and released gradually into the medium along the incubation period, depending on As(V)/P molar ratios. Reduction and methylation were the leading processes of As(V) metabolism by Pyropia yezoensis, whereas Sargassum patens showed only the reduction. Sargassum horneri reduced As(V) under low level (0.1 µM), but both reduction and methylation were observed under a high level (1 µM). At the end of incubation, 0.17, 0.15, 0.1 µM of reduced metabolite (As[III]) were recorded from 1 µM of As(V)/P containing cultures of Sargassum horneri, Sargassum patens, and Pyropia yezoensis, respectively. On the other hand, 0.024 and 0.28 µM of methylated metabolite (DMAA[V]) were detected under the same culture conditions from Sargassum horneri and Pyropia yezoensis, respectively. The results also indicated that P in medium inhibits the intracellular uptake of As(V) and subsequent extrusion of biotransformed metabolites into the medium. These findings can help to understand the metabolic diversity of macroalgae species on As biogeochemistry in the marine environment.


Assuntos
Arsênio/metabolismo , Biotransformação , Inativação Metabólica , Alga Marinha/metabolismo , Metilação , Fosfatos/metabolismo , Fosfatos/farmacologia , Sargassum , Água do Mar
18.
Chemosphere ; 222: 705-713, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30738313

RESUMO

Freshwater and marine organisms are capable of metabolizing arsenic (As) efficiently and regulating the As biogeochemical cycles. In this study, Undaria pinnatifida was exposed to As(V) (0, 0.1, and 1 µM) and phosphate (P; 1 and 10 µM) in seawater under laboratory-controlled conditions for up to seven days to analyze As biotransformation. The growth rates and chlorophyll fluorescence of the alga were unaffected by As stress, and statistically insignificant differences were observed among the cultures (p > 0.05). As(V) was readily accumulated by this macroalga through phosphate transporters, transformed intracellularly, and excreted into the medium, depending on the As(V) to P molar ratios. The concentration of As(V) and biotransformed species As(III) and DMAA(V) varied significantly in the algal cultures on the basis of the exposure period (p < 0.05). The concentration of As(III) was initially higher but decreased with the incubation period, whereas the concentration of DMAA(V) increased gradually. At the end of the incubation, 0.04 and 0.32 µM DMAA(V) were recorded in the media containing 0.1 and 1 µM As(V) with a constant 1.0 µM P, respectively. The results also indicated that the cellular uptake of As(V) and subsequent release of DMAA(V) were inhibited by P in the medium. The biotransformation was consistent with the As(V) detoxification mechanism based on reduction and methylation, which was enhanced by the lower As(V) to P molar ratios. These findings can be helpful in understanding the contribution of macroalgae to As biogeochemistry in marine environments and the potential risks of As dietary intake.


Assuntos
Arsênio/metabolismo , Undaria/metabolismo , Biotransformação , Inativação Metabólica , Metilação , Fosfatos/farmacologia , Água do Mar , Alga Marinha/metabolismo
19.
Talanta ; 194: 980-990, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609633

RESUMO

The determination of aminopolycarboxylate chelators in environmental samples has remained an analytical challenge due to the structural similarities of these species and their minute concentrations in such matrices. Herein, we report a fast and sensitive technique for the determination of multiple chelator complexes in an aqueous matrix using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Eight chelators, including non-biodegradable (EDTA, EDTAOH, GEDTA, DPTAOH and DTPA) and biodegradable (EDDS, GLDA, and MGDA) variants were examined after complexation with CuII. The detection of these species using reverse-phase chromatography was compared with that achieved with hydrophilic interaction chromatography based on the corresponding peak resolution and retention time. The effect of varying the composition and pH of the mobile phase on the corresponding peak profiles and intensities for the chelator complexes was also evaluated. The CuII-derivatives of the chelators were individually detected under the optimized operating conditions. Relative to high-performance liquid chromatography equipped with a photodiode array detector, the developed UPLC-Q-TOF-MS technique provides rapid determination of chelator complexes in aqueous matrices with high sensitivity and superior peak resolution. The limit of detection ranged from 1.7-36 nmol L-1, and the limit of quantification ranged from 5.7-120 nmol L-1 for the eight chelator complexes in solution. The coefficients of determination (R2) were 0.962-0.999 for the chelators with an average relative uncertainty of 2.2%. The method was validated using a simulated mixed matrix and river water by standard addition (recovery: 83-100%).

20.
Environ Sci Pollut Res Int ; 26(23): 24162-24175, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31228056

RESUMO

Ship breaking and recycling industry (SBRI) loops back scarce ferrous and non-ferrous materials from dismantled ships and also renews the global shipping fleet by treating the end-of-life (EoL) ships. Currently, SBRIs in Bangladesh, India, and Pakistan are dismantling the majority of the EoL ships by open beaching method. Accordingly, ship dismantling carries the blame of releasing potentially toxic elements (PTEs) to the coastal and marine environment risking the food chain through potential bioaccumulation and biomagnification. Health risk assessment associated with PTEs from open beach ship dismantling is scarce. This study aimed at assessing concentrations and seasonal variations of PTEs in soils exposed to the activities of SBRIs for their source apportionment by using contamination factor (CF) and multivariate statistical analysis, while carcinogenic and non-carcinogenic health risks due to the PTEs have also been determined. Soil samples were collected twice-during pre-monsoon and post-monsoon seasons-from three working zones of each of the 15 different ship breaking yards spanning the entire SBRI zone in Bangladesh. Soil contamination was assessed by using the CF, and inverse distance weighting interpolation mapping showed the spatial distribution of metals at SBRI zone in Bangladesh. Multivariate statistical analysis, principal component analysis, and correlation matrix yielded the source apportionment of PTEs. Subsequently, carcinogenic and non-carcinogenic health risks were assessed following the approach recommended by the United States Environmental Protection Agency (USEPA) with uncertainty estimation through Monte Carlo simulation. Contamination levels of PTEs followed Cd > Zn > Cr > Cu > Pb > Ni > Mn > As. Concentrations of Cd, Cr, Mn, and Zn were higher than the maximum allowable regulatory limits at storage zone and also higher as compared with the beaching and cutting zones in general. The contamination index indicated extreme Cd contamination in the area with elevated levels in pre-monsoon. Two principal components (PC) were identified-PC1 (Cd, Cu, Mn, Pb, Zn) and PC2 (As, Cr, Ni) inferring their source segmentation. Indirect soil ingestion is the major possible exposure path to PTEs. The health index indicated the absence of any obvious health effects on the people active at SBRI yards in Bangladesh. The carcinogenic risk was for 6 to 7 persons per 100,000 people which was within the USEPA acceptable range.


Assuntos
Indústrias/métodos , Metais Pesados/análise , Medição de Risco/métodos , Navios , Poluentes do Solo/análise , Bangladesh , Carcinógenos/toxicidade , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/toxicidade , Análise Multivariada , Exposição Ocupacional/efeitos adversos , Reciclagem , Estações do Ano , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA