Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 35(49): 16185-16200, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31661626

RESUMO

The interaction of cysteine molecules with the Si(111)-√3×√3-Ag surface has been investigated over the submonolayer to multilayer regime using X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. With both upper step and lower step terraces, step edges, and antiphase boundaries, the √3×√3-Ag overlayer supported on Si(111) provides a rich two-dimensional template for studying site-specific biomolecular interactions. As an amino acid with three functional groups, cysteine is found to chemisorb through S-H bond cleavage and S-Ag bond linkage first at step edges and antiphase boundaries followed by island formation and expanded growth onto terraces. Intermolecular interactions are dominated by zwitterionic hydrogen bonding at higher coverages, producing a porous unordered interfacial layer composed of cysteine agglomerates at room temperature. Upon annealing, cysteine adsorbates induce structural transformation of the uniform √3×√3-Ag reconstructed surface lattice into metallic Ag clusters with a narrow size distribution and short-range ordering. Preferential nanoaggregate formation of cysteine at defect sites and cysteine-induced metal cluster formation promise a new approach to fabricating nanoclusters for potential applications in chemical sensing and catalysis.


Assuntos
Cisteína , Nanoestruturas/química , Silício/química , Prata/química , Temperatura , Adsorção
2.
Acc Chem Res ; 49(5): 942-51, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27014956

RESUMO

Understanding the adsorption, film growth mechanisms, and hydrogen bonding interactions of biological molecules on semiconductor surfaces has attracted much recent attention because of their applications in biosensors, biocompatible materials, and biomolecule-based electronic devices. One of the most challenging questions when studying the behavior of biomolecules on a metal or semiconductor surface is "What are the driving forces and film growth mechanisms for biomolecular adsorption on these surfaces?" Despite a large volume of work on self-assembly of amino acids on single-crystal metal surfaces, semiconductor surfaces offer more direct surface-mediated interactions and processes with biomolecules. This is due to their directional surface dangling bonds that could significantly perturb hydrogen bonding arrangements. For all the proteinogenic biomolecules studied to date, our group has observed that they generally follow a "universal" three-stage growth process on Si(111)7×7 surface. This is supported by corroborating data obtained from a three-pronged approach of combining chemical-state information provided by X-ray photoelectron spectroscopy (XPS) and the site-specific local density-of-state images obtained by scanning tunneling microscopy (STM) with large-scale quantum mechanical modeling based on the density functional theory with van der Waals corrections (DFT-D2). Indeed, this three-stage growth process on the 7×7 surface has been observed for small benchmark biomolecules, including glycine (the simplest nonchiral amino acid), alanine (the simplest chiral amino acid), cysteine (the smallest amino acid with a thiol group), and glycylglycine (the smallest (di)peptide of glycine). Its universality is further validated here for the other sulfur-containing proteinogenic amino acid, methionine. We use methionine as an example of prototypical proteinogenic amino acids to illustrate this surface-mediated process. This type of growth begins with the formation of a covalent-bond driven interfacial layer (first adlayer), followed by that of a transitional layer driven by interlayer and intralayer hydrogen bonding (second adlayer), and then finally the zwitterionic multilayers (with intralayer hydrogen bonding). The important role of surface-mediated hydrogen bonding as the key for this universal three-stage growth process is demonstrated. This finding provides new insight into biomolecule-semiconductor surface interactions often found in biosensors and biomolecular electronic devices. We also establish the trends in the H-bond length among different types of the hydrogen bonding for dimolecular structures in the gas phase and on the Si(111)7×7 surface, the latter of which could be validated by their STM images. Finally, five simple rules of thumb are developed to summarize the adsorption properties of these proteinogenic biomolecules as mediated by hydrogen bonding, and they are expected to provide a helpful guide to future studies of larger biomolecules and their potential applications.


Assuntos
Aminoácidos/química , Proteínas/química , Silício/química , Propriedades de Superfície
3.
J Am Chem Soc ; 136(48): 16909-18, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25375417

RESUMO

Surface functionalization of an inorganic surface with bio-organic molecules is often aimed at creating a "permanent" bio-organic surface with receptor functional groups. We show here that L-cysteine can be used to transform a highly reactive Si(111)7×7 surface to not just a permanent bio-organic surface but also a semipermanent (or renewable) and a temporary bio-organic surfaces by manipulating the exposure. In the early growth stage, the strong bonding between the first cysteine adlayer and the Si substrate through Si-N or Si-S linkages in unidentate or bidentate arrangement provides permanent biofunctionalization by this interfacial layer. This interfacial layer can be used to build a transitional layer (second adlayer) mediated by interlayer vertical hydrogen bonding between an amino group and a carboxylic acid group. Further exposure of cysteine eventually leads to a zwitterionic multilayer film involving electrostatic interactions between cation (-NH3(+)) and anion moieties (-COO(-)). The interlayer hydrogen bonding therefore provides temporary trapping of bio-organic molecules as the second transitional layer that is stable up to 175 °C. This transitional layer can be easily removed by annealing above this temperature and then regenerated with the same molecular layer or a different one by "renewing" the interlayer hydrogen bonds. We also illustrate coverage-dependent adsorption structures of cysteine, from bidentate to unidentate attachments and to self-assembled multimers, involving formation of intralayer horizontal N···H-O hydrogen bonds, by combining our X-ray photoemission data with the local density-of-state images obtained by scanning tunnelling microscopy.


Assuntos
Cisteína/química , Silício/química , Ligação de Hidrogênio , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA