Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Semin Cell Dev Biol ; 96: 91-99, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31075379

RESUMO

Crop productivity in rice is harshly limited due to high concentration of salt in the soil. To understand the intricacies of the mechanism it is important to unravel the key pathways operating inside the plant cell. Emerging state-of-the art technologies have provided the tools to discover the key components inside the plant cell for salt tolerance. Among the molecular entities, transcription factors and/or other important components of sensing and signaling cascades have been the attractive targets and the role of NHX and SOS1 transporters amply described. Not only marker assisted programs but also transgenic approaches by using reverse genetic strategies (knockout or knockdown) or overexpression have been extensively used to engineer rice crop. CRISPR/Cas is an attractive paradigm and provides the feasibility for manipulating several genes simultaneously. Here, in this review we highlight some of the molecular entities that could be potentially targeted for generating rice amenable to sustain growth under high salinity conditions by employing CRISPR/Cas. We also try to address key questions for rice salt stress tolerance other than what is already known.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Oryza/genética , Estresse Salino/genética
2.
Antibiotics (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36830171

RESUMO

phlD is a novel kind of polyketide synthase involved in the biosynthesis of non-volatile metabolite phloroglucinol by iteratively condensing and cyclizing three molecules of malonyl-CoA as substrate. Phloroglucinol or 2,4-diacetylphloroglucinol (DAPG) is an ecologically important rhizospheric antibiotic produced by pseudomonads; it exhibits broad spectrum anti-bacterial and anti-fungal properties, leading to disease suppression in the rhizosphere. Additionally, DAPG triggers systemic resistance in plants, stimulates root exudation, as well as induces phyto-enhancing activities in other rhizobacteria. Here, we report the cloning and analysis of the phlD gene from soil-borne gram-negative bacteria-Pseudomonas. The full-length phlD gene (from 1078 nucleotides) was successfully cloned and the structural details of the PHLD protein were analyzed in-depth via a three-dimensional topology and a refined three-dimensional model for the PHLD protein was predicted. Additionally, the stereochemical properties of the PHLD protein were analyzed by the Ramachandran plot, based on which, 94.3% of residues fell in the favored region and 5.7% in the allowed region. The generated model was validated by secondary structure prediction using PDBsum. The present study aimed to clone and characterize the DAPG-producing phlD gene to be deployed in the development of broad-spectrum biopesticides for the biocontrol of rhizospheric pathogens.

3.
Cells ; 12(10)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37408207

RESUMO

Vegetative to reproductive phase transition in phototropic plants is an important developmental process and is sequentially mediated by the expression of micro-RNA MIR172. To obtain insight into the evolution, adaptation, and function of MIR172 in photophilic rice and its wild relatives, we analyzed the genescape of a 100 kb segment harboring MIR172 homologs from 11 genomes. The expression analysis of MIR172 revealed its incremental accumulation from the 2-leaf to 10-leaf stage, with maximum expression coinciding with the flag-leaf stage in rice. Nonetheless, the microsynteny analysis of MIR172s revealed collinearity within the genus Oryza, but a loss of synteny was observed in (i) MIR172A in O. barthii (AA) and O. glaberima (AA); (ii) MIR172B in O. brachyantha (FF); and (iii) MIR172C in O. punctata (BB). Phylogenetic analysis of precursor sequences/region of MIR172 revealed a distinct tri-modal clade of evolution. The genomic information generated in this investigation through comparative analysis of MIRNA, suggests mature MIR172s to have evolved in a disruptive and conservative mode amongst all Oryza species with a common origin of descent. Further, the phylogenomic delineation provided an insight into the adaptation and molecular evolution of MIR172 to changing environmental conditions (biotic and abiotic) of phototropic rice through natural selection and the opportunity to harness untapped genomic regions from rice wild relatives (RWR).


Assuntos
MicroRNAs , Oryza , Oryza/genética , Oryza/metabolismo , Filogenia , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/metabolismo
4.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107326

RESUMO

Flax (Linum usitatissimum L.) is a self-pollinating, annual, diploid crop grown for multi-utility purposes for its quality oil, shining bast fiber, and industrial solvent. Being a cool (Rabi) season crop, it is affected by unprecedented climatic changes such as high temperature, drought, and associated oxidative stress that, globally, impede its growth, production, and productivity. To precisely assess the imperative changes that are inflicted by drought and associated oxidative stress, gene expression profiling of predominant drought-responsive genes (AREB, DREB/CBF, and ARR) was carried out by qRT-PCR. Nevertheless, for normalization/quantification of data obtained from qRT-PCR results, a stable reference gene is mandatory. Here, we evaluated a panel of four reference genes (Actin, EF1a, ETIF5A, and UBQ) and assessed their suitability as stable reference genes for the normalization of gene expression data obtained during drought-induced oxidative stress in flax. Taking together, from the canonical expression of the proposed reference genes in three different genotypes, we report that EF1a as a stand-alone and EF1a and ETIF5A in tandem are suitable reference genes to be used for the real-time visualization of cellular impact of drought and oxidative stress on flax.

5.
Biology (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979120

RESUMO

Rice is the major staple food crop for more than 50% of the world's total population, and its production is of immense importance for global food security. As a photophilic plant, its yield is governed by the quality and duration of light. Like all photosynthesizing plants, rice perceives the changes in the intensity of environmental light using phytochromes as photoreceptors, and it initiates a morphological response that is termed as the shade-avoidance response (SAR). Phytochromes (PHYs) are the most important photoreceptor family, and they are primarily responsible for the absorption of the red (R) and far-red (FR) spectra of light. In our endeavor, we identified the morphological differences between two contrasting cultivars of rice: IR-64 (low-light susceptible) and Swarnaprabha (low-light tolerant), and we observed the phenological differences in their growth in response to the reduced light conditions. In order to create genomic resources for low-light tolerant rice, we constructed a subgenomic library of Swarnaprabha that expedited our efforts to isolate light-responsive photoreceptors. The titer of the library was found to be 3.22 × 105 cfu/mL, and the constructed library comprised clones of 4-9 kb in length. The library was found to be highly efficient as per the number of recombinant clones. The subgenomic library will serve as a genomic resource for the Gramineae community to isolate photoreceptors and other genes from rice.

6.
Indian J Exp Biol ; 50(5): 340-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22803324

RESUMO

In a combined approach of phenotypic and genotypic characterization, 28 indigenous rhizobial isolates obtained from different chickpea growing regions in peninsular and northern India were analyzed for diversity. The field isolates were compared to two reference strains TAL620 and UPM-Ca142 representing M. ciceri and M. mediterraneum respectively. Phenotypic markers such as resistance to antibiotics, tolerance to salinity, temperature, pH, phosphate solubilization ability, growth rate and also symbiotic efficiency showed considerable diversity among rhizobial isolates. Their phenotypic patterns showed adaptations of rhizobial isolates to abiotic stresses such as heat and salinity. Two salt tolerant strains (1.5% NaCl by T1 and T4) with relatively high symbiotic efficiency and two P-solubilising strains (66.7 and 71 microg/ml by T2 and T5) were identified as potential bioinoculants. Molecular profiling by 16S ribosomal DNA Restriction Fragment Length Polymorphism (RFLP) revealed three clusters at 67% similarity level. Further, the isolates were differentiated at intraspecific level by 16S rRNA gene phylogeny. Results assigned all the chickpea rhizobial field isolates to belong to three different species of Mesorhizobium genus. 46% of the isolates grouped with Mesorhizobium loti and the rest were identified as M. ciceri and M. mediterraneum, the two species which have been formerly described as specific chickpea symbionts. This is the first report on characterization of chickpea nodulating rhizobia covering soils of both northern and peninsular India. The collection of isolates, diverse in terms of species and symbiotic effectiveness holds a vast pool of genetic material which can be effectively used to yield superior inoculant strains.


Assuntos
Adaptação Fisiológica , Cicer/microbiologia , RNA Ribossômico 16S/genética , Rhizobium/genética , Genótipo , Temperatura Alta , Concentração de Íons de Hidrogênio , Índia , Mesorhizobium/genética , Fenótipo , Filogenia , Polimorfismo de Fragmento de Restrição , Rhizobium/classificação , Rhizobium/crescimento & desenvolvimento , Rhizobium/isolamento & purificação , Salinidade , Simbiose
7.
World J Microbiol Biotechnol ; 28(4): 1681-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22805950

RESUMO

Tomato (Lycopersicon esculentum) is important widely grown vegetable in India and its productivity is affected by bacterial wilt disease infection caused by Ralstonia solanacearum. To prevent this disease infection a study was conducted to isolate and screen effective plant growth promoting rhizobacteria (PGPR) antagonistic to R. solanacearum. A total 297 antagonistic bacteria were isolated through dual culture inoculation technique, out of which forty-two antagonistic bacteria were found positive for phlD gene by PCR amplification using two primer sets Phl2a:Phl2b and B2BF:BPR4. The genetic diversity of phlD (+) bacteria was studied by amplified 16S rDNA restriction analysis and demonstrated eleven groups at 65% similarity level. Out of these 42 phlD (+) antagonistic isolates, twenty exhibited significantly fair plant growth promoting activities like phosphate solubilization (0.92-5.33%), 25 produced indole acetic acid (1.63-7.78 µg ml(-1)) and few strains show production of antifungal metabolites (HCN and siderophore). The screening of PGPR (phlD (+)) for suppression of bacterial wilt disease in glass house conditions was showed ten isolated phlD (+) bacteria were able to suppress infection of bacterial wilt disease in tomato plant (var. Arka vikas) in the presence R. solanacearum. The PGPR (phlD (+)) isolates s188, s215 and s288 was observed to be effective plant growth promoter as it shows highest dry weight per plant (3.86, 3.85 and 3.69 g plant(-1) respectively). The complete absence of wilt disease symptoms in tomato crop plants was observed by these treatments compared to negative control. Therefore inoculation of tomato plant with phlD (+) isolate s188 and other similar biocontrol agents may prove to be a positive strategy for checking wilt disease and thus improving plant vigor.


Assuntos
Alphaproteobacteria/genética , Alphaproteobacteria/fisiologia , Antibiose , Proteínas de Bactérias/biossíntese , Doenças das Plantas/prevenção & controle , Ralstonia solanacearum/patogenicidade , Solanum lycopersicum/microbiologia , Alphaproteobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Biomassa , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Índia , Solanum lycopersicum/crescimento & desenvolvimento , Programas de Rastreamento/métodos , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Ralstonia solanacearum/crescimento & desenvolvimento , Análise de Sequência de DNA
8.
J Biotechnol ; 343: 38-46, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673121

RESUMO

Burgeoning human population dents, globally, the brimming buffer stock as well as gain in food grain production. However, an imminent global starvation was averted through precise scientific intervention and pragmatic policy changes in the 1960s and was eulogized as the "Green Revolution". Miracle rice and wheat obtained through morphometric changes in the ideotype of these two crops yielded bumper harvest that nucleated in Asia and translated into Latin America. The altered agronomic traits in these two crops were the result of tinkering with the phyto-hormone "Gibberellin'. Recently, another plant hormone 'Cytokinin' has gained prominence for its involvement in the grain revolution in rice and other field crops. Suo moto homeostasis of CK by the cytokinin oxidase enzyme governs the cardinal shoot apical meristem that produces new flowering primordia thereby enhancing grain number. Similarly, the flowering hormone 'Florigen' impacts sympodia formation, flowering, and fruit production in tomato. The role of heterozygosity induced heterosis by florigen in revolutionizing tomato production and cellular homeostasis of CK by CK oxidising enzyme (CKX) in enhancing rice production has been path-breaking. This review highlights role of phytohormones in grain revolution and crop specific fine-tuning of gibberellins, cytokinins and florigen to accomplish maximum yield potential in field crops.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Florígeno , Reguladores de Crescimento de Plantas/metabolismo , Citocininas/metabolismo , Florígeno/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Meristema/metabolismo
9.
Cells ; 11(21)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359857

RESUMO

MIRNAs are small non-coding RNAs that play important roles in a wide range of biological processes in plant growth and development. MIR397 (involved in drought, low temperature, and nitrogen and copper (Cu) starvation) and MIR408 (differentially expressed in response to environmental stresses such as copper, light, mechanical stress, dehydration, cold, reactive oxygen species, and drought) belong to conserved MIRNA families that either negatively or positively regulate their target genes. In the present study, we identified the homologs of MIR397 and MIR408 in Oryza sativa and its six wild progenitors, three non-Oryza species, and one dicot species. We analyzed the 100 kb segments harboring MIRNA homologs from 11 genomes to obtain a comprehensive view of their community evolution around these loci in the farthest (distant) relatives of rice. Our study showed that mature MIR397 and MIR408 were highly conserved among all Oryza species. Comparative genomics analyses also revealed that the microsynteny of the 100 kb region surrounding MIRNAs was only conserved in Oryza spp.; disrupted in Sorghum, maize, and wheat; and completely lost in Arabidopsis. There were deletions, rearrangements, and translocations within the 100 kb segments in Oryza spp., but the overall microsynteny of the region was maintained. The phylogenetic analyses of the precursor regions of all MIRNAs under study revealed a bimodal clade of common origin. This comparative analysis of miRNA involved in abiotic stress tolerance in plants provides a powerful tool for future Oryza research. Crop wild relatives (CWRs) offer multiple traits with potential to decrease the amount of yield loss owing to biotic and abiotic stresses. Using a comparative genomics approach, the exploration of CWRs as a source of tolerance to these stresses by understanding their evolution can be further used to leverage their yield potential.


Assuntos
Arabidopsis , MicroRNAs , Oryza , Arabidopsis/genética , Cobre , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/genética , Filogenia
10.
J Biotechnol ; 337: 80-89, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34111457

RESUMO

Crop plants have an innate capacity to acclimatize and survive myriad stresses in field conditions. This acclimatization to stress enhances crop stand in field and productivity of plant. Inter alia field crops withstand drought stress (hydropenia) by inducing synthesis or accumulation of osmolytes such as (i) proline and other amino acids, (ii) glycine betaine (GB), (iii) soluble carbohydrates, and (iv) reactive oxygen species (ROS) scavenging system as intrinsic drought antagonizing molecules. Precise in vivo induction of osmolytes and their effect on ROS scavenging system in flax/linseed has not been elucidated. The investigation was carried out to identify a tolerant and susceptible cultivar of flax from a core collection of 53 core accessions and evaluate the role of compatible osmolytes in Linum usitatissimum under hydropenia. We screened eight morphometrically diverse flax genotypes in field under irrigated and un-irrigated condition and classified them as tolerant and susceptible genotypes. Further, we examined the effect of ex-foliar glycine betaine application - a signature molecule involved in drought tolerance, on selected tolerant and susceptible varieties. Our results showed stimulatory impact of glycine betaine on accumulation of ROS scavenging antioxidants, total soluble protein and on its own accumulation. While the ex-foliar application had no inhibitory effect on the growth of plants; accumulation of free proline, amino acids and carbohydrates are inhibited par se in flax. Our findings reveal, flax is a non-accumulator of glycine betaine and exogenous application of glycine betaine enhances its own levels during drought stress.


Assuntos
Secas , Linho , Betaína , Carboidratos , Espécies Reativas de Oxigênio
11.
Front Genome Ed ; 3: 617553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713247

RESUMO

Prime editing is an adaptation of the CRISPR-Cas system that uses a Cas9(H840A)-reverse transcriptase fusion and a guide RNA amended with template and primer binding site sequences to achieve RNA-templated conversion of the target DNA, allowing specified substitutions, insertions, and deletions. In the first report of prime editing in plants, a variety of edits in rice and wheat were described, including insertions up to 15 bp. Several studies in rice quickly followed, but none reported a larger insertion. Here, we report easy-to-use vectors for prime editing in dicots as well as monocots, their validation in Nicotiana benthamiana, rice, and Arabidopsis, and an insertion of 66 bp that enabled split-GFP fluorescent tagging.

12.
Front Plant Sci ; 11: 562056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584740

RESUMO

Efficient regeneration of explants devoid of intrinsic somaclonal variations is a cardinal step in plant tissue culture, thus, a vital component of transgenic technology. However, recalcitrance of economically important crops to tissue culture-based organogenesis ensues a setback in the use of transgenesis in the genetic engineering of crop plants. The present study developed an optimized, genotype-independent, nonconventional tissue culture-independent in planta strategy for the genetic transformation of flax/linseed. This apical meristem-targeted in planta transformation protocol will accelerate value addition in the dual purpose industrially important but recalcitrant fiber crop flax/linseed. The study delineated optimization of Agrobacterium tumefaciens-mediated transformation and stable T-DNA (pCambia2301:GUS:nptII) integration in flax. It established successful use of a stringent soilrite-based screening in the presence of 30 mg/L kanamycin for the identification of putative transformants. The amenability, authenticity, and reproducibility of soilrite-based kanamycin screening were further verified at the molecular level by GUS histochemical analysis of T0 seedlings, GUS and nptII gene-specific PCR, genomic Southern hybridization for stable integration of T-DNA, and expression analysis of transgenes by sqRT-PCR. This method resulted in a screening efficiency of 6.05% in the presence of kanamycin, indicating amenability of in planta flax transformation. The strategy can be a promising tool for the successful development of transgenics in flax.

13.
Front Microbiol ; 11: 579504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193207

RESUMO

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) constrains production in major rice growing countries of Asia. Xoo injects transcription activator-like effectors (TALEs) that bind to and activate host "susceptibility" (S) genes that are important for disease. The bacterial blight resistance gene xa5, which reduces TALE activity generally, has been widely deployed. However, strains defeating xa5 have been reported in India and recently also in Thailand. We completely sequenced and compared the genomes of one such strain from each country and examined the encoded TALEs. The two genomes are nearly identical, including the TALE genes, and belong to a previously identified, highly clonal lineage. Each strain harbors a TALE known to activate the major S gene SWEET11 strongly enough to be effective even when diminished by xa5. The findings suggest international migration of the xa5-compatible pathotype and highlight the utility of whole genome sequencing and TALE analysis for understanding and responding to breakdown of resistance.

14.
Front Chem ; 6: 264, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258837

RESUMO

Drought induced stress is often a bottleneck of agricultural crop production. Invariably, field crops across all agro-ecological regions succumb to it with an yield penalty. Drought massively affects the growth and harvestable yield in crops and has become an imminent problem necessitating breeding of tolerant crops. It induces myriad changes of biochemical, molecular, and physiological nature that manifest into aberrant plant morphology. The response to drought in plants incites a signaling cascade that involves perception and translation of drought signal leading to concomitant modulation of gene expression and de novo osmolyte synthesis. The intricate patterns of expression of these genes vary from early induction to late responsive genes. While one class of genes codes for products imparting osmotolerance and protection to plants, the second class predominantly modulates target gene expression by an intricate signal transduction mechanism. This review summarizes both canonical and non-canonical cascades of drought stress response in plants, delineating the mechanism in rice (Oryza sativa) and emphasizes hydropenia induced lipid signaling.

15.
Front Microbiol ; 9: 2703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483230

RESUMO

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host "susceptibility" (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harboring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.

16.
Sci Rep ; 7: 46137, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447607

RESUMO

Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.


Assuntos
Aquaporinas/genética , Linho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Sequência de Aminoácidos , Aquaporinas/química , Aquaporinas/metabolismo , Sequência Conservada , Evolução Molecular , Éxons/genética , Linho/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Íntrons/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Silício/farmacologia , Frações Subcelulares/metabolismo
17.
Front Plant Sci ; 7: 1543, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833619

RESUMO

Evolutionary frozen, genetically sterile and globally iconic fruit "Banana" remained untouched by the green revolution and, as of today, researchers face intrinsic impediments for its varietal improvement. Recently, this wonder crop entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution) genotype of Musa acuminata. Its complex genome decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Historically, banana has faced the wrath of pandemic bacterial, fungal, and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small/marginal farmers' and destroyed commercial plantations. Decoding structural genome of this climacteric fruit has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unraveling the process of parthenocarpy, and fruit ripening for better fruit quality. Further, injunction of comparative genomics will usher in integration of information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana.

18.
GM Crops Food ; 5(2): 106-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072186

RESUMO

A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.


Assuntos
Secas , Linho/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estresse Fisiológico/genética , Genes de Plantas , Fenótipo
20.
Science ; 328(5976): 351-4, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20395508

RESUMO

Although dimorphic sexes have evolved repeatedly in multicellular eukaryotes, their origins are unknown. The mating locus (MT) of the sexually dimorphic multicellular green alga Volvox carteri specifies the production of eggs and sperm and has undergone a remarkable expansion and divergence relative to MT from Chlamydomonas reinhardtii, which is a closely related unicellular species that has equal-sized gametes. Transcriptome analysis revealed a rewired gametic expression program for Volvox MT genes relative to Chlamydomonas and identified multiple gender-specific and sex-regulated transcripts. The retinoblastoma tumor suppressor homolog MAT3 is a Volvox MT gene that displays sexually regulated alternative splicing and evidence of gender-specific selection, both of which are indicative of cooption into the sexual cycle. Thus, sex-determining loci affect the evolution of both sex-related and non-sex-related genes.


Assuntos
Proteínas de Algas/genética , Evolução Molecular , Genes , Loci Gênicos , Volvox/genética , Volvox/fisiologia , Proteínas de Algas/metabolismo , Processamento Alternativo , Divisão Celular , Chlamydomonas/genética , Chlamydomonas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes do Retinoblastoma , Íntrons , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Recombinação Genética , Reprodução , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA