Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 153(3): 562-74, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622241

RESUMO

Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes. This, together with AMP1-independent recruitment of miRNA target transcripts to membrane fractions, shows that miRNAs inhibit the translation of target RNAs on the ER. This study demonstrates that translation inhibition is an important activity of plant miRNAs, reveals the subcellular location of this activity, and uncovers a previously unknown function of the ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carboxipeptidases/metabolismo , Retículo Endoplasmático/metabolismo , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Carboxipeptidases/genética , Pleiotropia Genética , Mutação , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
2.
Plant J ; 110(6): 1636-1650, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388535

RESUMO

Root hairs are single-cell projections in the root epidermis. The presence of root hairs greatly expands the root surface, which facilitates soil anchorage and the absorption of water and nutrients. Root hairs are also the ideal system to study the mechanism of polar growth. Previous research has identified many important factors that control different stages of root hair development. Using a chemical genetics screen, in this study we report the identification of a steroid molecule, RHP1, which promotes root hair growth at nanomolar concentrations without obvious change of other developmental processes. We further demonstrate that RHP1 specifically affects tip growth with no significant influence on cell fate or planar polarity. We also show that RHP1 promotes root hair tip growth via acting upstream of the RHD6-RSL4-dependent transcriptional pathway and ROP GTPase-guided local signaling. Finally, we demonstrate that RHP1 exhibits a wide range of effects on different plant species in both monocots and dicots. This study of RHP1 will not only help to dissect the mechanism of root hair tip growth, but also provide a new tool to modify root hair growth in different plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Raízes de Plantas , Transdução de Sinais
3.
Plant Cell ; 32(7): 2141-2157, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32327535

RESUMO

Plant cellulose is synthesized by rosette-structured cellulose synthase (CESA) complexes (CSCs). Each CSC is composed of multiple subunits of CESAs representing three different isoforms. Individual CESA proteins contain conserved catalytic domains for catalyzing cellulose synthesis, other domains such as plant-conserved sequences, and class-specific regions that are thought to facilitate complex assembly and CSC trafficking. Because of the current lack of atomic-resolution structures for plant CSCs or CESAs, the molecular mechanism through which CESA catalyzes cellulose synthesis and whether its catalytic activity influences efficient CSC transport at the subcellular level remain unknown. Here, by performing chemical genetic analyses, biochemical assays, structural modeling, and molecular docking, we demonstrate that Endosidin20 (ES20) targets the catalytic site of CESA6 in Arabidopsis (Arabidopsis thaliana). Chemical genetic analysis revealed important amino acids that potentially participate in the catalytic activity of plant CESA6, in addition to previously identified conserved motifs across kingdoms. Using high spatiotemporal resolution live cell imaging, we found that inhibiting the catalytic activity of CESA6 by ES20 treatment reduced the efficiency of CSC transport to the plasma membrane. Our results demonstrate that ES20 is a chemical inhibitor of CESA activity and trafficking that represents a powerful tool for studying cellulose synthesis in plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Celulose/biossíntese , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Glucosiltransferases/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Acoplamento Molecular , Mutação , Plantas Geneticamente Modificadas , Conformação Proteica
4.
Plant Physiol ; 187(3): 1399-1413, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618088

RESUMO

The phytohormone jasmonoyl-L-isoleucine (JA-Ile) regulates many stress responses and developmental processes in plants. A co-receptor complex formed by the F-box protein Coronatine Insensitive 1 (COI1) and a Jasmonate (JA) ZIM-domain (JAZ) repressor perceives the hormone. JA-Ile antagonists are invaluable tools for exploring the role of JA-Ile in specific tissues and developmental stages, and for identifying regulatory processes of the signaling pathway. Using two complementary chemical screens, we identified three compounds that exhibit a robust inhibitory effect on both the hormone-mediated COI-JAZ interaction and degradation of JAZ1 and JAZ9 in vivo. One molecule, J4, also restrains specific JA-induced physiological responses in different angiosperm plants, including JA-mediated gene expression, growth inhibition, chlorophyll degradation, and anthocyanin accumulation. Interaction experiments with purified proteins indicate that J4 directly interferes with the formation of the Arabidopsis (Arabidopsis thaliana) COI1-JAZ complex otherwise induced by JA. The antagonistic effect of J4 on COI1-JAZ also occurs in the liverwort Marchantia polymorpha, suggesting the mode of action is conserved in land plants. Besides JA signaling, J4 works as an antagonist of the closely related auxin signaling pathway, preventing Transport Inhibitor Response1/Aux-indole-3-acetic acid interaction and auxin responses in planta, including hormone-mediated degradation of an auxin repressor, gene expression, and gravitropic response. However, J4 does not affect other hormonal pathways. Altogether, our results show that this dual antagonist competes with JA-Ile and auxin, preventing the formation of phylogenetically related receptor complexes. J4 may be a useful tool to dissect both the JA-Ile and auxin pathways in particular tissues and developmental stages since it reversibly inhibits these pathways. One-sentence summary: A chemical screen identified a molecule that antagonizes jasmonate perception by directly interfering with receptor complex formation in phylogenetically distant vascular and nonvascular plants.


Assuntos
Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Marchantia/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(42): 21291-21301, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570580

RESUMO

Vacuoles are essential organelles in plants, playing crucial roles, such as cellular material degradation, ion and metabolite storage, and turgor maintenance. Vacuoles receive material via the endocytic, secretory, and autophagic pathways. Membrane fusion is the last step during which prevacuolar compartments (PVCs) and autophagosomes fuse with the vacuole membrane (tonoplast) to deliver cargoes. Protein components of the canonical intracellular fusion machinery that are conserved across organisms, including Arabidopsis thaliana, include complexes, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), that catalyze membrane fusion, and homotypic fusion and vacuole protein sorting (HOPS), that serve as adaptors which tether cargo vesicles to target membranes for fusion under the regulation of RAB-GTPases. The mechanisms regulating the recruitment and assembly of tethering complexes are not well-understood, especially the role of RABs in this dynamic regulation. Here, we report the identification of the small synthetic molecule Endosidin17 (ES17), which interferes with synthetic, endocytic, and autophagic traffic by impairing the fusion of late endosome compartments with the tonoplast. Multiple independent target identification techniques revealed that ES17 targets the VPS35 subunit of the retromer tethering complex, preventing its normal interaction with the Arabidopsis RAB7 homolog RABG3f. ES17 interference with VPS35-RABG3f interaction prevents the retromer complex to endosome anchoring, resulting in retention of RABG3f. Using multiple approaches, we show that VPS35-RABG3f-GTP interaction is necessary to trigger downstream events like HOPS complex assembly and fusion of late compartments with the tonoplast. Overall, our results support a role for the interaction of RABG3f-VPS35 as a checkpoint in the control of traffic toward the vacuole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fusão de Membrana/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo
7.
Plant Cell ; 29(1): 90-108, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011692

RESUMO

The endomembrane system is an interconnected network required to establish signal transduction, cell polarity, and cell shape in response to developmental or environmental stimuli. In the model plant Arabidopsis thaliana, there are numerous markers to visualize polarly localized plasma membrane proteins utilizing endomembrane trafficking. Previous studies have shown that the large ARF-GEF GNOM plays a key role in the establishment of basal (rootward) polarity, whereas the apically (shootward) polarized membrane proteins undergo sorting via different routes. However, the mechanism that maintains apical polarity is largely unknown. Here, we used a chemical genomic approach and identified the compound endosidin 16 (ES16), which perturbed apically localized plasma membrane proteins without affecting basal polarity. We demonstrated that ES16 is an inhibitor for recycling of apical, lateral, and nonpolar plasma membrane proteins as well as biosynthetic secretion, leaving the basal proteins as the only exceptions not subject to ES16 inhibition. Further evidence from pharmaceutical and genetic data revealed that ES16 effects are mediated through the regulation of small GTPase RabA proteins and that RabA GTPases work in concert with the BIG clade ARF-GEF to modulate the nonbasal trafficking. Our results reveal that ES16 defines a distinct pathway for endomembrane sorting routes and is essential for the establishment of cell polarity.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/ultraestrutura , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Immunoblotting , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
9.
Mol Cell ; 42(3): 356-66, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549312

RESUMO

Argonaute (AGO) proteins are critical components of RNA silencing pathways that bind small RNAs and mediate gene silencing at their target sites. We found that Arabidopsis AGO2 is highly induced by the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Further genetic analysis demonstrated that AGO2 functions in antibacterial immunity. One abundant species of AGO2-bound small RNA is miR393b(∗), which targets a Golgi-localized SNARE gene, MEMB12. Pst infection downregulates MEMB12 in a miR393b(∗)-dependent manner. Loss of function of MEMB12, but not SYP61, another intracellular SNARE, leads to increased exocytosis of an antimicrobial pathogenesis-related protein, PR1. Overexpression of miR393b(∗) resembles memb12 mutant in resistance responses. Thus, AGO2 functions in antibacterial immunity by binding miR393b(∗) to modulate exocytosis of antimicrobial PR proteins via MEMB12. Since miR393 also contributes to antibacterial responses, miR393(∗)/miR393 represent an example of a miRNA(∗)/miRNA pair that functions in immunity through two distinct AGOs: miR393(∗) through AGO2 and miR393 through AGO1.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas SNARE/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Sequência de Bases , Northern Blotting , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , MicroRNAs/metabolismo , Mutação , Ligação Proteica , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas SNARE/metabolismo , Homologia de Sequência do Ácido Nucleico
10.
Proc Natl Acad Sci U S A ; 113(1): E41-50, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26607451

RESUMO

The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells and enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. This study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endossomos/metabolismo , Exocitose , Limoninas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Sequência Conservada , Evolução Molecular , Humanos , Estrutura Secundária de Proteína
11.
Proc Natl Acad Sci U S A ; 112(1): E89-98, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535344

RESUMO

The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red staining suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Proteínas Ribossômicas/metabolismo , Vacúolos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Teste de Complementação Genética , Ácidos Indolacéticos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Meristema/efeitos dos fármacos , Meristema/metabolismo , Modelos Biológicos , Mutação , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Sinais Direcionadores de Proteínas , Transporte Proteico/efeitos dos fármacos , Proteínas Ribossômicas/genética , Vacúolos/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 112(7): E806-15, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646449

RESUMO

Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF-defective mutants gnom-like 1 (gnl1-1) and gnom (van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER)-Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Endocitose , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico
13.
J Exp Bot ; 69(1): 39-46, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-28992077

RESUMO

The endomembrane trafficking network is highly complex and dynamic, with both conventional and so-called unconventional routes which are in essence recently discovered pathways that are poorly understood in plants. One approach to dissecting endomembrane pathways that we have pioneered is the use of chemical biology. Classical genetic manipulations often deal with indirect pleiotropic phenotypes resulting from the perturbation of key players of the trafficking routes. Many of these difficulties can be circumvented using small molecules to modify or disrupt the function or localization of key proteins regulating these pathways. In this review, we summarize how small molecules have been used as probes to define these pathways, and how they could be used to increase current knowledge of unconventional protein secretion pathways.


Assuntos
Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Via Secretória , Transporte Proteico
15.
Biol Res ; 48: 39, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26209329

RESUMO

BACKGROUND: A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae. RESULTS: A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS: Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.


Assuntos
Alcanossulfonatos/farmacologia , Endocitose/fisiologia , Proteínas de Plantas/fisiologia , Transporte Proteico , Rodanina/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Transporte Biológico , Fenótipo , Transporte Proteico/genética , Rodanina/farmacologia , Via Secretória , Vacúolos/fisiologia
16.
Proc Natl Acad Sci U S A ; 109(48): 19537-44, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23144218

RESUMO

Upstream ORFs are elements found in the 5'-leader sequences of specific mRNAs that modulate the translation of downstream ORFs encoding major gene products. In Arabidopsis, the translational control of auxin response factors (ARFs) by upstream ORFs has been proposed as a regulatory mechanism required to respond properly to complex auxin-signaling inputs. In this study, we identify and characterize the aberrant auxin responses in specific ribosomal protein mutants in which multiple ARF transcription factors are simultaneously repressed at the translational level. This characteristic lends itself to the use of these mutants as genetic tools to bypass the genetic redundancy among members of the ARF family in Arabidopsis. Using this approach, we were able to assign unique functions for ARF2, ARF3, and ARF6 in plant development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/fisiologia , Fases de Leitura Aberta , Transporte Proteico , Transdução de Sinais , Vacúolos/metabolismo
17.
Plant Cell ; 23(11): 3944-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22108404

RESUMO

The interactions between phytohormones are crucial for plants to adapt to complex environmental changes. One example is the ethylene-regulated local auxin biosynthesis in roots, which partly contributes to ethylene-directed root development and gravitropism. Using a chemical biology approach, we identified a small molecule, l-kynurenine (Kyn), which effectively inhibited ethylene responses in Arabidopsis thaliana root tissues. Kyn application repressed nuclear accumulation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Moreover, Kyn application decreased ethylene-induced auxin biosynthesis in roots, and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE RELATEDs (TAA1/TARs), the key enzymes in the indole-3-pyruvic acid pathway of auxin biosynthesis, were identified as the molecular targets of Kyn. Further biochemical and phenotypic analyses revealed that Kyn, being an alternate substrate, competitively inhibits TAA1/TAR activity, and Kyn treatment mimicked the loss of TAA1/TAR functions. Molecular modeling and sequence alignments suggested that Kyn effectively and selectively binds to the substrate pocket of TAA1/TAR proteins but not those of other families of aminotransferases. To elucidate the destabilizing effect of Kyn on EIN3, we further found that auxin enhanced EIN3 nuclear accumulation in an EIN3 BINDING F-BOX PROTEIN1 (EBF1)/EBF2-dependent manner, suggesting the existence of a positive feedback loop between auxin biosynthesis and ethylene signaling. Thus, our study not only reveals a new level of interactions between ethylene and auxin pathways but also offers an efficient method to explore and exploit TAA1/TAR-dependent auxin biosynthesis.


Assuntos
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Cinurenina/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Triptofano Transaminase/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Inibidores Enzimáticos/farmacologia , Etilenos/farmacologia , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/farmacologia , Cinurenina/química , Cinurenina/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Bibliotecas de Moléculas Pequenas , Fatores de Transcrição/metabolismo , Triptofano Transaminase/genética , Triptofano Transaminase/metabolismo
18.
Proc Natl Acad Sci U S A ; 108(43): 17850-5, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22006339

RESUMO

Endomembrane trafficking relies on the coordination of a highly complex, dynamic network of intracellular vesicles. Understanding the network will require a dissection of cargo and vesicle dynamics at the cellular level in vivo. This is also a key to establishing a link between vesicular networks and their functional roles in development. We used a high-content intracellular screen to discover small molecules targeting endomembrane trafficking in vivo in a complex eukaryote, Arabidopsis thaliana. Tens of thousands of molecules were prescreened and a selected subset was interrogated against a panel of plasma membrane (PM) and other endomembrane compartment markers to identify molecules that altered vesicle trafficking. The extensive image dataset was transformed by a flexible algorithm into a marker-by-phenotype-by-treatment time matrix and revealed groups of molecules that induced similar subcellular fingerprints (clusters). This matrix provides a platform for a systems view of trafficking. Molecules from distinct clusters presented avenues and enabled an entry point to dissect recycling at the PM, vacuolar sorting, and cell-plate maturation. Bioactivity in human cells indicated the value of the approach to identifying small molecules that are active in diverse organisms for biology and drug discovery.


Assuntos
Algoritmos , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico/fisiologia , Células Cultivadas , Análise por Conglomerados , Imunofluorescência , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Microscopia Confocal , Estrutura Molecular , Plântula/metabolismo , Bibliotecas de Moléculas Pequenas/classificação , Imagem com Lapso de Tempo , Nicotiana
19.
Plant Cell ; 22(1): 143-58, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20061553

RESUMO

In plants, the mechanisms that regulate the transit of vacuolar soluble proteins containing C-terminal and N-terminal vacuolar sorting determinants (VSDs) to the vacuole are largely unknown. In a screen for Arabidopsis thaliana mutants affected in the trafficking of C-terminal VSD containing proteins, we isolated the ribosomal biogenesis mutant rpl4a characterized by its partial secretion of vacuolar targeted proteins and a plethora of developmental phenotypes derived from its aberrant auxin responses. In this study, we show that ribosomal biogenesis can be directly regulated by auxins and that the exogenous application of auxins to wild-type plants results in vacuolar trafficking defects similar to those observed in rpl4a mutants. We propose that the influence of auxin on ribosomal biogenesis acts as a regulatory mechanism for auxin-mediated developmental processes, and we demonstrate the involvement of this regulatory mechanism in the sorting of vacuolar targeted proteins in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Ribossômicas/biossíntese , Vacúolos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Mutagênese Insercional , Mutação , Transporte Proteico , Proteoma/metabolismo , RNA de Plantas/genética , Proteínas Ribossômicas/genética
20.
Proc Natl Acad Sci U S A ; 106(46): 19533-8, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19889978

RESUMO

Eukaryotes have evolved highly conserved vesicle transport machinery to deliver proteins to the vacuole. In this study we show that the filamentous fungus Aspergillus parasiticus employs this delivery system to perform new cellular functions, the synthesis, compartmentalization, and export of aflatoxin; this secondary metabolite is one of the most potent naturally occurring carcinogens known. Here we show that a highly pure vesicle-vacuole fraction isolated from A. parasiticus under aflatoxin-inducing conditions converts sterigmatocystin, a late intermediate in aflatoxin synthesis, to aflatoxin B(1); these organelles also compartmentalize aflatoxin. The role of vesicles in aflatoxin biosynthesis and export was confirmed by blocking vesicle-vacuole fusion using 2 independent approaches. Disruption of A. parasiticus vb1 (encodes a protein homolog of AvaA, a small GTPase known to regulate vesicle fusion in A. nidulans) or treatment with Sortin3 (blocks Vps16 function, one protein in the class C tethering complex) increased aflatoxin synthesis and export but did not affect aflatoxin gene expression, demonstrating that vesicles and not vacuoles are primarily involved in toxin synthesis and export. We also observed that development of aflatoxigenic vesicles (aflatoxisomes) is strongly enhanced under aflatoxin-inducing growth conditions. Coordination of aflatoxisome development with aflatoxin gene expression is at least in part mediated by Velvet (VeA), a global regulator of Aspergillus secondary metabolism. We propose a unique 2-branch model to illustrate the proposed role for VeA in regulation of aflatoxisome development and aflatoxin gene expression.


Assuntos
Aflatoxina B1/metabolismo , Aspergillus/metabolismo , Vesículas Citoplasmáticas/metabolismo , Aflatoxina B1/biossíntese , Aflatoxina B1/genética , Aspergillus/ultraestrutura , Vesículas Citoplasmáticas/ultraestrutura , Regulação para Baixo , Regulação Fúngica da Expressão Gênica , Fusão de Membrana , Vacúolos/metabolismo , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA