Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 291, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845637

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK). METHODS: Data for this study were obtained from published reports spanning the period from 2013 to 2022. In Egypt and the UK, a total of 9,751 and 10,602 food samples were analyzed, respectively. Among these samples, 3,205 (32.87%) in Egypt and 4,447 (41.94%) in the UK were found to contain AMR bacteria. RESULTS: In Egypt, the predominant resistance was observed against ß-lactam and aminoglycosides, while in the United Kingdom, most isolates exhibited resistance to tetracycline and ß-lactam. The findings from the analysis underscore the increasing prevalence of AMR in certain microorganisms, raising concerns about the development of multidrug resistance. CONCLUSION: This meta-analysis sheds light on the escalating AMR problem associated with certain microorganisms that pose a higher risk of multidrug resistance development. The significance of implementing One Health AMR surveillance is emphasized to bridge knowledge gaps and facilitate accurate AMR risk assessments, ensuring consumer safety. Urgent actions are needed on a global scale to combat AMR and preserve the effectiveness of antimicrobial treatments for the well-being of all living beings.


Assuntos
Anti-Infecciosos , Saúde Única , Animais , Humanos , Antibacterianos/uso terapêutico , beta-Lactamas , Farmacorresistência Bacteriana , Egito , Reino Unido
2.
J Nanobiotechnology ; 21(1): 148, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149615

RESUMO

Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.


Assuntos
Nanocompostos , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Micelas , Nanopartículas/química , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química
3.
Chem Biodivers ; 20(2): e202200600, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36597267

RESUMO

Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2) and is responsible for a higher degree of morbidity and mortality worldwide. There is a smaller number of approved therapeutics available to target the SARS-CoV-2 virus, and the virus is evolving at a fast pace. So, there is a continuous need for new therapeutics to combat COVID-19. The main protease (Mpro ) enzyme of SARS-CoV-2 is essential for replication and transcription of the viral genome, thus could be a potent target for the treatment of COVID-19. In the present study, we performed an in-silico screening analysis of 400 diverse bioactive inhibitors with proven antibacterial and antiviral properties against Mpro drug target. Ten compounds showed a higher binding affinity for Mpro than the reference compound (N3), with desired physicochemical properties. Furthermore, in-depth docking and superimposition revealed that three compounds (MMV1782211, MMV1782220, and MMV1578574) are actively interacting with the catalytic domain of Mpro . In addition, the molecular dynamics simulation study showed a solid and stable interaction of MMV178221-Mpro complex compared to the other two molecules (MMV1782220, and MMV1578574). In line with this observation, MM/PBSA free energy calculation also demonstrated the highest binding free energy of -115.8 kJ/mol for MMV178221-Mpro compound. In conclusion, the present in silico analysis revealed MMV1782211 as a possible and potent molecule to target the Mpro and must be explored in vitro and in vivo to combat the COVID-19.


Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2
4.
Hum Mol Genet ; 29(18): 3094-3106, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32916703

RESUMO

High-altitude pulmonary edema (HAPE) is a noncardiogenic form of pulmonary edema, which is induced upon exposure to hypobaric hypoxia at high altitude (HA). Hypobaric hypoxia generates reactive oxygen species that may damage telomeres and disturb normal physiological processes. Telomere complex comprises of multiple proteins, of which, tankyrase (TNKS) is actively involved in DNA damage repairs. We hence investigated the association of TNKS and telomeres with HAPE to delineate their potential role at HA. The study was performed in three groups, High-altitude pulmonary edema patients (HAPE-p, n = 200), HAPE-resistant sojourners (HAPE-r, n = 200) and highland permanent healthy residents (HLs, n = 200). Variants of TNKS were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Plasma TNKS level was estimated using enzyme-linked immunosorbent assay, expression of TNKS and relative telomere length were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and telomerase activity was assessed by the telomere repeat amplification protocol assay. TNKS poly-ADP ribosylates the telomere-repeat factor (TRF), which is a negative regulator of telomere length. Consequently, TRF expression was also measured by RT-qPCR. The TNKS heterozygotes rs7015700GA were prevalent in HLs compared to the HAPE-p and HAPE-r. The plasma TNKS was significantly decreased in HAPE-p than HAPE-r (P = 0.006). TNKS was upregulated 9.27 folds in HAPE-p (P = 1.01E-06) and downregulated in HLs by 3.3 folds (P = 0.02). The telomere length was shorter in HAPE-p compared to HAPE-r (P = 0.03) and HLs (P = 4.25E-4). The telomerase activity was significantly higher in HAPE-p compared to both HAPE-r (P = 0.01) and HLs (P = 0.001). HAPE-p had the lowest TNKS levels (0.186 ± 0.031 ng/µl) and the highest telomerase activity (0.0268 amoles/µl). The findings of the study indicate the association of TNKS and telomeres with HA adaptation/maladaptation.


Assuntos
Doença da Altitude/genética , Predisposição Genética para Doença , Hipertensão Pulmonar/genética , Tanquirases/genética , Telomerase/genética , Homeostase do Telômero/genética , Adulto , Idoso , Alelos , Altitude , Doença da Altitude/fisiopatologia , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Estudos de Associação Genética , Genótipo , Voluntários Saudáveis , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/genética , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição/genética , Telômero/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-31010860

RESUMO

Indole-2-carboxamide derivatives are inhibitors of MmpL3, the cell wall-associated mycolic acid transporter of Mycobacterium tuberculosis In the present study, we characterized indoleamide effects on bacterial cell morphology and reevaluated pharmacokinetics and in vivo efficacy using an optimized oral formulation. Morphologically, indoleamide-treated M. tuberculosis cells demonstrated significantly higher numbers of dimples near the poles or septum, which may serve as the mechanism of cell death for this bactericidal scaffold. Using the optimized formulation, an expanded-spectrum indoleamide, compound 2, showed significantly improved pharmacokinetic (PK) parameters and in vivo efficacy in mouse infection models. In a comparative study, compound 2 showed superior efficacy over compound 3 (NITD-304) in a high-dose aerosol mouse infection model. Since indoleamides are equally active on drug-resistant M. tuberculosis, these findings demonstrate the therapeutic potential of this novel scaffold for the treatment of both drug-susceptible and drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Administração Oral , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Indóis/química , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/citologia , Tuberculose/microbiologia
6.
J Antimicrob Chemother ; 74(7): 1962-1970, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31049578

RESUMO

BACKGROUND: RBx 14255 is a fluoroketolide in pre-clinical evaluation with potent activity against MDR Gram-positive pathogens. OBJECTIVES: To investigate the efficacy of RBx 14255 against bacterial meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis or Haemophilus influenzae in an experimental murine meningitis model. METHODS: In vitro activity of RBx 14255 was evaluated against clinical isolates of S. pneumoniae, N. meningitidis and H. influenzae. The in vivo efficacy of RBx 14255 was evaluated against bacterial meningitis, induced with S. pneumoniae 3579 erm(B), S. pneumoniae MA 80 erm(B), N. meningitidis 1852 and H. influenzae B1414 in a murine meningitis model. RESULTS: RBx 14255 showed strong in vitro bactericidal potential against S. pneumoniae, N. meningitidis and H. influenzae with MIC ranges of 0.004-0.1, 0.03-0.5 and 1-4 mg/L, respectively. In a murine meningitis model, a 50 mg/kg dose of RBx 14255, q12h, resulted in significant reduction of bacterial counts in the brain compared with the pretreatment control. The concentration of RBx 14255 in brain tissue correlated well with the efficacy in this mouse model. CONCLUSIONS: RBx 14255 showed superior bactericidal activity in time-kill assays in vitro and in vivo in an experimental murine meningitis model. RBx 14255 could be a promising candidate for future drug development against bacterial meningitis.


Assuntos
Antibacterianos/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Cetolídeos/farmacologia , Neisseria meningitidis/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/química , Modelos Animais de Doenças , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/microbiologia , Cetolídeos/química , Meningite Meningocócica/tratamento farmacológico , Meningite Meningocócica/microbiologia , Meningite Meningocócica/patologia , Camundongos , Testes de Sensibilidade Microbiana , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia
7.
Nanomedicine ; 14(4): 1213-1225, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524496

RESUMO

RBx 11760 is a bi-aryl oxazolidinone antibacterial agent active against Staphylococcus aureus but has poor solubility. Here we have encapsulated RBx 11760 in PLA-PEG NPs with an aim to improve physicochemical, pharmacokinetics and in vivo efficacy. The average size and zeta potential of RBx 11760 loaded NPs were found to be 106.4 nm and -22.2 mV, respectively. The absolute size of nanoparticles by HRTEM was found to be approximately 80 nm. In vitro antibacterial agar well diffusion assay showed clear zone of inhibition of bacterial growth. In pharmacokinetic study, nanoparticle showed 4.6-fold and 7-fold increase in AUCinf and half-life, respectively, as compared to free drug. RBx 11760 nanoparticle significantly reduced bacterial counts in lungs and improved the survival rate of immunocompromised mice as compared to free drugs. Thus, RBx 11760 loaded nanoparticles have strong potential to be used as nanomedicine against sensitive and drug resistant Staphylococcus aureus infections.


Assuntos
Abscesso/tratamento farmacológico , Broncopneumonia/tratamento farmacológico , Virilha/patologia , Lactatos/química , Nanopartículas/química , Oxazolidinonas/farmacologia , Polietilenoglicóis/química , Staphylococcus aureus/patogenicidade , Abscesso/microbiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Broncopneumonia/microbiologia , Broncopneumonia/patologia , Virilha/microbiologia , Hospedeiro Imunocomprometido , Masculino , Camundongos , Oxazolidinonas/farmacocinética , Oxazolidinonas/uso terapêutico , Ratos
8.
Antimicrob Agents Chemother ; 60(12): 7134-7145, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645240

RESUMO

RBx 11760, a bi-aryl oxazolidinone, was investigated for antibacterial activity against Gram-positive bacteria. The MIC90s of RBx 11760 and linezolid against Staphylococcus aureus were 2 and 4 mg/liter, against Staphylococcus epidermidis were 0.5 and 2 mg/liter, and against Enterococcus were 1 and 4 mg/liter, respectively. Similarly, against Streptococcus pneumoniae the MIC90s of RBx 11760 and linezolid were 0.5 and 2 mg/liter, respectively. In time-kill studies, RBx 11760, tedizolid, and linezolid exhibited bacteriostatic effect against all tested strains except S. pneumoniae RBx 11760 showed 2-log10 kill at 4× MIC while tedizolid and linezolid showed 2-log10 and 1.4-log10 kill at 16× MIC, respectively, against methicillin-resistant S. aureus (MRSA) H-29. Against S. pneumoniae 5051, RBx 11760 showed bactericidal activity, with 4.6-log10 kill at 4× MIC compared to 2.42-log10 and 1.95-log10 kill for tedizolid and linezolid, respectively, at 16× MIC. RBx 11760 showed postantibiotic effects (PAE) at 3 h at 4 mg/liter against MRSA H-29, and linezolid showed the same effect at 16 mg/liter. RBx 11760 inhibited biofilm production against methicillin-resistant S. epidermidis (MRSE) ATCC 35984 in a concentration-dependent manner. In a foreign-body model, linezolid and rifampin resulted in no advantage over stasis, while the same dose of RBx 11760 demonstrated a significant killing compared to the initial control against S. aureus (P < 0.05) and MRSE (P < 0.01). The difference in killing was statistically significant for the lower dose of RBx 11760 (P < 0.05) versus the higher dose of linezolid (P > 0.05 [not significant]) in a groin abscess model. In neutropenic mouse thigh infection, RBx 11760 showed stasis at 20 mg/kg of body weight, whereas tedizolid showed the same effect at 40 mg/kg. These data support RBx 11760 as a promising investigational candidate.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Oxazolidinonas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Biofilmes , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Linezolida/farmacologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Neutropenia/tratamento farmacológico , Neutropenia/microbiologia , Organofosfatos/farmacologia , Oxazóis/farmacologia , Oxazolidinonas/química , Oxazolidinonas/farmacocinética , Pielonefrite/tratamento farmacológico , Pielonefrite/microbiologia , Ratos Wistar , Dermatopatias Bacterianas/tratamento farmacológico
9.
Antimicrob Agents Chemother ; 58(8): 4283-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24550341

RESUMO

We present here the novel ketolide RBx 14255, a semisynthetic macrolide derivative obtained by the derivatization of clarithromycin, for its in vitro and in vivo activities against sensitive and macrolide-resistant Streptococcus pneumoniae. RBx 14255 showed excellent in vitro activity against macrolide-resistant S. pneumoniae, including an in-house-generated telithromycin-resistant strain (S. pneumoniae 3390 NDDR). RBx 14255 also showed potent protein synthesis inhibition against telithromycin-resistant S. pneumoniae 3390 NDDR. The binding affinity of RBx 14255 toward ribosomes was found to be more than that for other tested drugs. The in vivo efficacy of RBx 14255 was determined in murine pulmonary infection induced by intranasal inoculation of S. pneumoniae ATCC 6303 and systemic infection with S. pneumoniae 3390 NDDR strains. The 50% effective dose (ED50) of RBx 14255 against S. pneumoniae ATCC 6303 in a murine pulmonary infection model was 3.12 mg/kg of body weight. In addition, RBx 14255 resulted in 100% survival of mice with systemic infection caused by macrolide-resistant S. pneumoniae 3390 NDDR at 100 mg/kg four times daily (QID) and at 50 mg/kg QID. RBx 14255 showed favorable pharmacokinetic properties that were comparable to those of telithromycin.


Assuntos
Antibacterianos/farmacologia , Cetolídeos/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Inibidores da Síntese de Proteínas/farmacologia , Sepse/tratamento farmacológico , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Relação Dose-Resposta a Droga , Esquema de Medicação , Farmacorresistência Bacteriana , Cetolídeos/síntese química , Cetolídeos/farmacocinética , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidade , Pneumonia Bacteriana/patologia , Inibidores da Síntese de Proteínas/síntese química , Inibidores da Síntese de Proteínas/farmacocinética , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Sepse/microbiologia , Sepse/mortalidade , Sepse/patologia , Streptococcus pneumoniae/patogenicidade , Streptococcus pneumoniae/fisiologia , Análise de Sobrevida
10.
Prog Mol Biol Transl Sci ; 207: 151-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942536

RESUMO

Cardiovascular diseases (CVDs) are characterized by abnormalities in the heart, blood vessels, and blood flow. CVDs comprise a diverse set of health issues. There are several types of CVDs like stroke, endothelial dysfunction, thrombosis, atherosclerosis, plaque instability and heart failure. Identification of a new drug for heart disease takes longer duration and its safety efficacy test takes even longer duration of research and approval. This chapter explores drug repurposing, nano-therapy, and plant-based treatments for managing CVDs from existing drugs which saves time and safety issues with testing new drugs. Existing drugs like statins, ACE inhibitor, warfarin, beta blockers, aspirin and metformin have been found to be useful in treating cardiac disease. For better drug delivery, nano therapy is opening new avenues for cardiac research by targeting interleukin (IL), TNF and other proteins by proteome interactome analysis. Nanoparticles enable precise delivery to atherosclerotic plaques, inflammation areas, and damaged cardiac tissues. Advancements in nano therapeutic agents, such as drug-eluting stents and drug-loaded nanoparticles are transforming CVDs management. Plant-based treatments, containing phytochemicals from Botanical sources, have potential cardiovascular benefits. These phytochemicals can mitigate risk factors associated with CVDs. The integration of these strategies opens new avenues for personalized, effective, and minimally invasive cardiovascular care. Altogether, traditional drugs, phytochemicals along with nanoparticles can revolutionize the future cardiac health care by identifying their signaling pathway, mechanism and interactome analysis.


Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Animais , Cardiopatias/tratamento farmacológico
11.
Prog Mol Biol Transl Sci ; 205: 23-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38789181

RESUMO

Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.


Assuntos
Reposicionamento de Medicamentos , Doenças do Sistema Nervoso , Animais , Humanos , Descoberta de Drogas , Doenças do Sistema Nervoso/tratamento farmacológico
12.
J Biomol Struct Dyn ; 41(11): 5117-5126, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652895

RESUMO

The present study is conducted to find the solution of rising antimicrobial resistance (AMR) in Escherichia coli which is a pathogen responsible for fatal systemic infections in human and animals. The enzyme dihydrofolate reductase (DHFR) is found in all organisms. In this study DHFR of E. coli (ec-DHFR) and human DHFR (h-DHFR) is targeted by novel chemical entities (NCE) from the Pathogen box of Medicines for Malaria Venture, Switzerland (MMV) using molecular modelling. The in-silico studies were further validated by in-vitro assays. The virtual screening of 400 MMV compounds was conducted using PyRx standard tool followed by manual docking of selected compounds by Autodock vina and Ligplot program. The in-silico studies showed good binding energy and strong hydrogen bond in docking of MMV675968 with ec-DHFR and no hydrogen bond with h-DHFR. This was further validated by the Molecular dynamic studies that revealed high binding free energy in ec-DHFR and in-vitro assays that produced good synergy in combination study of MMV675968 with last line (meropenem) and last resort (colistin) antibiotics. The extensive MD simulation and energetic analysis thus concludes that MMV675968 targets ec-DHFR. The combination studies were conducted with MMV675968 and FDA approved drugs against a panel of multidrug resistant Escherichia coli isolates. The synergistic results obtained in combination studies concluded that in-vitro data is consistent with in-silico data and that MMV675968 is a potential lead for future process of antimicrobial drug development against the multidrug resistance E. coli.Communicated by Ramaswamy H. Sarma.


Assuntos
Escherichia coli , Tetra-Hidrofolato Desidrogenase , Humanos , Animais , Escherichia coli/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Antibacterianos/farmacologia , Simulação de Dinâmica Molecular
13.
Cells ; 12(3)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766754

RESUMO

Autophagy is a lysosomal protein degradation system that eliminates cytoplasmic components such as protein aggregates, damaged organelles, and even invading pathogens. Autophagy is an evolutionarily conserved homoeostatic strategy for cell survival in stressful conditions and has been linked to a variety of biological processes and disorders. It is vital for the homeostasis and survival of renal cells such as podocytes and tubular epithelial cells, as well as immune cells in the healthy kidney. Autophagy activation protects renal cells under stressed conditions, whereas autophagy deficiency increases the vulnerability of the kidney to injury, resulting in several aberrant processes that ultimately lead to renal failure. Renal fibrosis is a condition that, if chronic, will progress to end-stage kidney disease, which at this point is incurable. Chronic Kidney Disease (CKD) is linked to significant alterations in cell signaling such as the activation of the pleiotropic cytokine transforming growth factor-ß1 (TGF-ß1). While the expression of TGF-ß1 can promote fibrogenesis, it can also activate autophagy, which suppresses renal tubulointerstitial fibrosis. Autophagy has a complex variety of impacts depending on the context, cell types, and pathological circumstances, and can be profibrotic or antifibrotic. Induction of autophagy in tubular cells, particularly in the proximal tubular epithelial cells (PTECs) protects cells against stresses such as proteinuria-induced apoptosis and ischemia-induced acute kidney injury (AKI), whereas the loss of autophagy in renal cells scores a significant increase in sensitivity to several renal diseases. In this review, we discuss new findings that emphasize the various functions of TGF-ß1 in producing not just renal fibrosis but also the beneficial TGF-ß1 signaling mechanisms in autophagy.


Assuntos
Insuficiência Renal Crônica , Fator de Crescimento Transformador beta1 , Humanos , Autofagia/fisiologia , Fibrose , Rim/patologia , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo
14.
One Health ; 16: 100477, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36593979

RESUMO

Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was ß-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.

15.
Biomolecules ; 13(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627247

RESUMO

Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR.


Assuntos
Antibacterianos , Saúde Única , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biofilmes , Análise Custo-Benefício
16.
Antibiotics (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671322

RESUMO

Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, and yield distinct biological effects. AgNPs are capable of bypassing immune cells, staying in the system for longer periods and with a higher distribution, reaching target tissues at higher concentrations, avoiding diffusion to adjacent tissues, releasing therapeutic agents or drugs for specific stimuli to achieve a longer duration at a specific rate, and yielding desired effects. The phytofabrication of AgNPs is a cost-effective, one-step, environmentally friendly, and easy method that harnesses sustainable resources and naturally available components of plant extracts (PEs). In addition, it processes various catalytic activities for the degradation of various organic pollutants. For the phytofabrication of AgNPs, plant products can be used in a multifunctional manner as a reducing agent, a stabilizing agent, and a functionalizing agent. In addition, they can be used to curtail the requirements for any additional stabilizing agents and to help the reaction stages subside. Azadirachta indica, a very common and prominent medicinal plant grown throughout the Indian subcontinent, possesses free radical scavenging and other pharmaceutical properties via the regulation of proinflammatory enzymes, such as COX and TOX. It also demonstrates anticancer activities through cell-signaling pathways, modulating tumor-suppressing genes such as p53 and pTEN, transcriptional factors, angiogenesis, and apoptosis via bcl2 and bax. In addition, it possesses antibacterial activities. Phytofabricated AgNPs have been applied in the areas of drug delivery, bioimaging, biosensing, cancer treatment, cosmetics, and cell biology. Such pharmaceutical and biological activities of phytofabricated AgNPs are attributed to more than 300 phytochemicals found in Azadirachta indica, and are especially abundant in flavonoids, polyphenols, diterpenoids, triterpenoids, limonoids, tannins, coumarin, nimbolide, azadirachtin, azadirone, azadiradione, and gedunin. Parts of Azadirachta indica, including the leaves in various forms, have been used for wound healing or as a repellent. This study was aimed at examining previously biosynthesized (from Azadirachta indica) AgNPs for anticancer, wound-healing, and antimicrobial actions (through MTT reduction assay, scratch assay, and microbroth dilution methods, respectively). Additionally, apoptosis in cancer cells and the antibiofilm capabilities of AgNPs were examined through caspase-3 expression, dentine block, and crystal violet methods. We found that biogenic silver nanoparticles are capable of inducing cytotoxicity in HCT-116 colon carcinoma cells (IC50 of 744.23 µg/mL, R2: 0.94), but are ineffective against MCF-7 breast cancer cells (IC50 >> 1000 µg/mL, R2: 0.86). AgNPs (IC50 value) induced a significant increase in caspase-3 expression (a 1.5-fold increase) in HCT-116, as compared with control cells. FITC-MFI was 1936 in HCT-116-treated cells, as compared to being 4551 in cisplatin and 1297 in untreated cells. AgNPs (6.26 µg/mL and 62.5 µg/mL) induced the cellular migration (40.2% and 33.23%, respectively) of V79 Chinese hamster lung fibroblasts; however, the improvement in wound healing was not significant as it was for the controls. AgNPs (MIC of 10 µg/mL) were very effective against MDR Enterococcus faecalis in the planktonic mode as well as in the biofilm mode. AgNPs (10 µg/mL and 320 µg/mL) reduced the E. faecalis biofilm by >50% and >80%, respectively. Natural products, such as Syzygium aromaticum (clove) oil (MIC of 312.5 µg/mL) and eugenol (MIC of 625 µg/mL), showed significant antimicrobial effects against A. indica. Our findings indicate that A. indica-functionalized AgNPs are effective against cancer cells and can induce apoptosis in HCT-116 colon carcinoma cells; however, the anticancer properties of AgNPs can also be upgraded through active targeting (functionalized with enzymes, antibiotics, photosensitizers, or antibodies) in immunotherapy, photothermal therapy, and photodynamic therapy. Our findings also suggest that functionalized AgNPs could be pivotal in the development of a novel, non-cytotoxic, biocompatible therapeutic agent for infected chronic wounds, ulcers, and skin lesions involving MDR pathogens via their incorporation into scaffolds, composites, patches, microgels, or formulations for microneedles, dressings, bandages, gels, or other drug-delivery systems.

17.
Future Microbiol ; 18: 625-638, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347211

RESUMO

Aim: The development of a novel inhibitor targeting gyrase B and topoisomerase IV offers an opportunity to combat multidrug resistance. Methods: We investigated the activity of RBx 10080758 against Gram-positive bacteria in vitro and in vivo. Results: RBx 10080758 showed a potent 50% inhibitory concentration of 0.13 µM and 0.25 µM against gyrase B and topoisomerase IV, respectively, and exhibited strong whole-cell in vitro activity with MIC ranges of 0.015-0.06 and 0.015-0.03 µg/ml against Staphylococcus aureus and Streptococcus pneumoniae, respectively. In a rat thigh infection model with methicillin-resistant S. aureus, RBx 10080758 at 45 mg/kg exhibited a >3 log10 CFU reduction in thigh muscles. Conclusion: RBx 10080758 displayed potent activity against multiple multidrug-resistant Gram-positive bacteria with a dual-targeting mechanism of action.


Assuntos
DNA Topoisomerase IV , Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Antibacterianos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Testes de Sensibilidade Microbiana
18.
Antimicrob Agents Chemother ; 56(11): 5986-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22869573

RESUMO

The MIC(90) of RBx 14255, a novel ketolide, against Clostridium difficile was 4 µg/ml (MIC range, 0.125 to 8 µg/ml), and this drug was found to be more potent than comparator drugs. An in vitro time-kill kinetics study of RBx 14255 showed time-dependent bacterial killing for C. difficile. Furthermore, in the hamster model of C. difficile infection, RBx 14255 demonstrated greater efficacy than metronidazole and vancomycin, making it a promising candidate for C. difficile treatment.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Enterocolite Pseudomembranosa/tratamento farmacológico , Cetolídeos/farmacologia , Animais , Antibacterianos/síntese química , Clostridioides difficile/crescimento & desenvolvimento , Cricetinae , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/mortalidade , Humanos , Cetolídeos/síntese química , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Taxa de Sobrevida , Vancomicina/farmacologia
19.
Gut Pathog ; 14(1): 40, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229889

RESUMO

BACKGROUND: A high-fat diet (HFD) induced perturbation of gut microbiota is a major contributory factor to promote the pathophysiology of HFD-associated metabolic syndrome. The HFD could also increase the susceptibility to the microbial infections warranting the use of antibiotics which are independently capable of impacting both gut microbiota and metabolic syndrome. Further, the usage of antibiotics in individuals consuming HFD can impact mitochondrial function that can be associated with an elevated risk of chronic conditions like inflammatory bowel disease (IBD). Despite this high propensity  to infections in individuals on HFD, the link between duration of HFD and antibiotic treatment, and its impact on diversity of the gut microbiome and features of metabolic syndrome is not well established. In this study, we have addressed these knowledge gaps by examining how the gut microbiota profile changes in HFD-fed mice receiving antibiotic intervention in the form of amoxicillin. We also determine whether antibiotic treatment in HFD-fed mice may adversely impact the ability of immune cells to clear microbial infections. METHODS AND RESULTS: We have subjected mice to HFD and chow diet (CD) for 3 weeks, and a subset of these mice on both diets received antibiotic intervention in the form of amoxicillin in the 3rd week. Body weight and food intake were recorded for 3 weeks. After 21 days, all animals were weighted and sacrificed. Subsequently, these animals were evaluated for basic haemato-biochemical and histopathological attributes. We used 16S rRNA sequencing followed by bioinformatics analysis to determine changes in gut microbiota in these mice. We observed that a HFD, even for a short-duration, could successfully induce the partial pathophysiology typical of a metabolic syndrome, and substantially modulated the gut microbiota in mice. The short course of amoxicillin treatment to HFD-fed mice resulted in beneficial effects by significantly reducing fasting blood glucose and skewing the number of thrombocytes towards a normal range. Remarkably, we observed a significant remodelling of gut microbiota in amoxicillin-treated HFD-fed mice. Importantly, some gut microbes associated with improved insulin sensitivity and recovery from metabolic syndrome only appeared in amoxicillin-treated HFD-fed mice reinforcing the beneficial effects of antibiotic treatment in the HFD-associated metabolic syndrome. Moreover, we also observed the presence of gut-microbiota unique to amoxicillin-treated HFD-fed mice that are also known to improve the pathophysiology associated with metabolic syndrome. However, both CD-fed as well as HFD-fed mice receiving antibiotics showed an increase in intestinal pathogens as is typically observed for antibiotic treatment. Importantly though, infection studies with S. aureus and A. baumannii, revealed that macrophages isolated from amoxicillin-treated HFD-fed mice are comparable to those isolated from mice receiving only HFD or CD in terms of susceptibility, and progression of microbial infection.  This finding  clearly indicated that amoxicillin treatment does not introduce any additional deficits in the ability of macrophages to combat microbial infections. CONCLUSIONS: Our results showed that amoxicillin treatment in HFD-fed mice exert a beneficial influence on the pathophysiological attributes of metabolic syndrome which correlates with a significant remodelling of gut microbiota. A novel observation was the increase in microbes known to improve insulin sensitivity following amoxicillin treatment during short-term intake of HFD. Even though there is a minor increase in gut-resistant intestinal pathogens in amoxicillin-treated groups, there is no adverse impact on macrophages with respect to their susceptibility and ability to control infections. Taken together, this study provides a proof of principle for the exploration of amoxicillin treatment as a potential therapy in the people affected with metabolic syndrome.

20.
J Biomol Struct Dyn ; 40(5): 2189-2203, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33074049

RESUMO

Tuberculosis (TB) has been recently declared as a health emergency because of sporadic increase in Multidrug-resistant Tuberculosis (MDR-TB) problem throughout the world. TB causing bacteria, Mycobacterium tuberculosis has become resistant to the first line of treatment along with second line of treatment and drugs, which are accessible to us. Thus, there is an urgent need of identification of key targets and development of potential therapeutic approach(s), which can overcome the Mycobacterium tuberculosis complications. In the present study, Mycobacterium tuberculosis proteasome has been taken as a potential target as it is one of the key regulatory proteins in Mycobacterium tuberculosis propagation. Further, a library of 400 compounds (small molecule) from Medicines for Malaria Venture (MMV) were screened against the target (proteasome) using molecular docking and simulation approach, and selected lead compounds were validated in in vitro model. In this study, we have identified two potent small molecules from the MMV Pathogen Box library, MMV019838 and MMV687146 with -9.8 kcal/mol and -8.7 kcal/mol binding energy respectively, which actively interact with the catalytic domain/active domain of Mycobacterium tuberculosis proteasome and inhibit the Mycobacterium tuberculosis growth in in vitro culture. Furthermore, the molecular docking and simulation study of MMV019838 and MMV687146 with proteasome show strong and stable interaction with Mycobacterium tuberculosis compared to human proteasome and show no cytotoxicity effect. A better understanding of proteasome inhibition in Mycobacterium tuberculosis in in vitro and in vivo model would eventually allow us to understand the molecular mechanism(s) and discover a novel and potent therapeutic agent against Tuberculosis. Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. Efflux pump activity was tested for a specific compound MMV019838 which was showing good in silico results than MIC values.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/química , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA