Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446711

RESUMO

Grape seed of Obeidi, a white Lebanese autochthonous variety, was previously tested in different studies as a valuable source of bioactive molecules such as polyphenols, oils, and proteins by means of extraction procedures for the development of cosmetic and therapeutic products. However, an un-valorized, exhausted grape seed residue remains as "secondary waste" after the extraction processes. In this study, the exhausted seeds have been further exploited to produce cosmetic scrubs capable of releasing antioxidant molecules during the exfoliation process, in accordance with the principles of the circular economy and going toward a zero-waste process. The deep characterization of the exhausted seeds confirmed the presence of antioxidant phenolic molecules including gallic acid, catechins and protocatechuic acid (0.13, 0.126, and 0.089 mg/g of dry matter DM), and a high phenolic content (11.85 mg gallic acid equivalents (GAE)/g of dry matter (DM)). Moreover, these residues were shown to possess a sandy texture (Hausner ratio (HR): 1.154, Carr index (CI): 0.133, and angle of repose: 31.62 (°) degrees), similar to commercial natural exfoliants. In this respect, exhausted Obeidi grape seed residues were incorporated at increasing concentrations (0.5, 1, 1.5, and 2% w/w) in a cosmetic scrub, and stored for 5 weeks at 4, 25, and 50 °C for stability testing. All tested scrub formulations exhibited good spreadability with a spread diameter of 3.6-4.7 cm and excellent physical stability, as no phase separation or color change were observed after four cycles of heat shock at 4 and 50 °C. Finally, an in vivo skin irritation test showed that the scrub enriched with 1.5% of exhausted Obeidi grape seed residues was the most promising formulation, as it possessed a high amount of phenolic molecules (0.042 ± 0.001 mg GAE/mL of scrub) and good stability and could be safely applied to the skin with no irritation phenomena. Overall results underlined that exhausted grape seed residues can be transformed into promising systems for both physical and chemical exfoliation, thus confirming the importance of the effective exploitation of agro-industrial by-products for the development of high value cosmeceutics towards a more sustainable and zero-waste approach.


Assuntos
Antioxidantes , Vitis , Antioxidantes/química , Vitis/química , Polifenóis/química , Fenóis/química , Sementes/química , Ácido Gálico/análise
2.
Molecules ; 27(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432159

RESUMO

The intensification of total phenolic compound (TPC) extraction from blood orange peels was optimized using a novel green infrared-assisted extraction technique (IRAE, Ired-Irrad®) and compared to the conventional extraction using a water bath (WB). Response surface methodology (RSM) allowed for the optimization of ethanol concentration (E), time (t), and temperature (T) in terms of extracted TPC and their antiradical activity, for both WB extraction and IRAE. Using WB extraction, the multiple response optimums as obtained after 4 h at 73 °C and using 79% ethanol/water were 1.67 g GAE/100 g for TPC and 59% as DPPH inhibition percentage. IRAE increased the extraction of TPC by 18% using 52% ethanol/water after less than 1 h at 79 °C. This novel technology has the advantage of being easily scalable for industrial usage. HPLC analysis showed that IRAE enhanced the recovery of gallic acid, resveratrol, quercetin, caffeic acid, and hesperidin. IR extracts exhibited high bioactivity by inhibiting the production of Aflatoxin B1 by 98.9%.


Assuntos
Aspergillus flavus , Citrus sinensis , Aflatoxina B1 , Citrus sinensis/química , Antioxidantes/farmacologia , Antioxidantes/análise , Extratos Vegetais/química , Fenóis/química , Etanol/química , Água , Tecnologia , Proliferação de Células
3.
Molecules ; 27(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014470

RESUMO

An ecofriendly extraction technology using infrared (IR) irradiation Ired-Irrad® was applied to purple corn cobs to enhance polyphenol recovery for the first time. The IR extraction efficiency was compared to that of the water bath (WB) method. Response surface methodology (RSM) using a central composite design was conducted to determine the effect of the experimental conditions (extraction time and treatment temperature) and their interactions on the total polyphenol and anthocyanin yields. Optimal extraction of total phenolic compounds (37 mg GAE/g DM) and total monomeric anthocyanins (14 mg C3G/g DM) were obtained at 63 °C for 77 min using IR as an extraction technique and water as a solvent. HPLC revealed that the recovery of peonidin 3-O-glucoside and cyanidin 3-O-glucoside was enhanced by 26% and 34%, respectively, when using IR. Finally, purple corn cobs' spray-dried extract was proven to be an important natural colorant of pickled turnip. It offers great potential for use as a healthy alternative to the carcinogenic rhodamine B synthetic dye, which was banned.


Assuntos
Antocianinas , Brassica napus , Extratos Vegetais , Polifenóis , Tecnologia , Água , Zea mays
4.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641373

RESUMO

Citrus genus is a prominent staple crop globally. Long-term breeding and much hybridization engendered a myriad of species, each characterized by a specific metabolism generating different secondary metabolites. Citrus aurantium L., commonly recognized as sour or bitter orange, can exceptionally be distinguished from other Citrus species by unique characteristics. It is a fruit with distinctive flavor, rich in nutrients and phytochemicals which possess different health benefits. This paper presents an overview of the most recent studies done on the matter. It intends to provide an in-depth understanding of the biological activities and medicinal uses of active constituents existing in C. aurantium. Every plant part is first discussed separately with regards to its content in active constituents. All extraction methods, their concepts and yields, used to recover these valuable molecules from their original plant matrix are thoroughly reported.


Assuntos
Citrus/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
5.
Phytochem Anal ; 29(2): 156-167, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28895235

RESUMO

INTRODUCTION: Prunus armeniaca L. (P. armeniaca) is one of the medicinal plants with a high safety-profile. OBJECTIVES: The aim of this work was to make an infrared-assisted extraction (IR-AE) of P. armeniaca fruit (pomace) and kernel, and analyse them using reverse phase high-performance liquid chromatography (RP-HPLC) aided method. METHODS: IR-AE is a novel-technique aimed at increasing the extraction-efficiency. The antidiabetic-potentials of the P. armeniaca pomace (AP) and the detoxified P. armeniaca kernel extract (DKAP) were monitored exploring their possible hypoglycemic-mechanisms. Acute (6 h), subchronic (8 days) and long-term (8 weeks) assessment of Diabetes mellitus (DM) using glucometers and glycated hemoglobin (HbA1c) methods were applied. RESULTS: Serum-insulin levels, the inhibitory effects on alpha-glucosidase, serum-catalase (CAT) and lipid peroxidation (LPO) levels were also monitored. AP was shown to be rich in polyphenolics like trans-lutein (14.1%), trans-zeaxanthin (10.5%), trans-ß-cryptoxanthin (11.6%), 13, cis-ß-carotene (6.5%), trans 9, cis-ß-carotene (18.4%), and ß-carotene (21.5%). Prunus armeniaca kernel extract before detoxification (KAP) was found to be rich in amygdaline (16.1%), which caused a high mortality rate (50.1%), while after detoxification (amygdaline, 1.4%) a lower mortality rate (9.1%) was found. AP showed significant (p ≤ 0.05, n = 7/group) antidiabetic-activity more prominent than DKAP acutely, subchronically and on longer-terms. IR-AEs displayed more efficient acute and subchronic blood glucose level (BGL) reduction than a conventional extraction method, which might be attributed to IR-AE superiority in extraction of active ingredients. AP showed more-significant and dose-dependent increase in serum-insulin, CAT-levels and body-weights more prominent than those of DKAP. Alpha-glucosidase and LPO levels were inhibited with AP-groups more-significantly. CONCLUSION: In comparison to conventional-methods, IR-AE appeared to be an efficient and time-conserving novel extraction method. The antidiabetic-potentials of pomace and detoxified-kernels of P. armeniaca were probably mediated via the attenuation of glucose-provoked oxidative-stress, the inhibition of alpha-glucosidase and the marked insulin-secretagogue effect. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/isolamento & purificação , Raios Infravermelhos , Extratos Vegetais/isolamento & purificação , Prunus/química , Sementes/química , Aloxano , Animais , Catalase/sangue , Diabetes Mellitus Experimental/sangue , Relação Dose-Resposta a Droga , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Polifenóis/análise , Prunus/embriologia , alfa-Glucosidases/sangue
6.
ScientificWorldJournal ; 2018: 8249184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618957

RESUMO

This work aims to study the impact of solvent mixture (between 0 and 50% ethanol/water mixture) and temperature (between 25°C and 75°C) levels on the solid-liquid extraction of phenolic compounds (quantity and bioactivity) from apricot pomace. Results show that the mean augmentation of 1% ethanol in the range [0-12%] enhances by three times the extraction of polyphenols compared to the same augmentation in the range [0-50%]. Similarly, the mean augmentation of 1°Celcius in the range [0-25°Celcius] enhances by two times the extraction of polyphenols compared to the same augmentation in the range [0-75°Celcius]. Moreover, 1% of ethanol exhibited a greater impact on the phenolic compound extraction than 1°Celsius. The response surface methodology showed that the optimal extraction condition was reached with 50% ethanol/water at 75°C giving a total phenolic content (TPC) of 9.8 mg GAE/g DM, a flavonoids content (FC) of 8.9 mg CE/g DM, a tannin content (TC) of 4.72 mg/L, and an antiradical activity (AA) of 44%. High-performance liquid chromatography (HPLC) analysis showed that polyphenols were influenced by the selectivity of the solvent as well as the properties of each phenolic compound. Apricot pomace extracts could therefore be used as natural bioactive molecules for many industrial applications.

7.
Int J Mol Sci ; 15(10): 18640-58, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25322155

RESUMO

In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications.


Assuntos
Antioxidantes/isolamento & purificação , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Vitis/química , Antioxidantes/análise , Dessecação , Flavonoides/análise , Flavonoides/isolamento & purificação , Fenóis/análise , Extratos Vegetais/análise , Solventes/química , Temperatura
8.
Sci Rep ; 14(1): 6532, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503788

RESUMO

The increasing antimicrobial resistance requires continuous investigation of new antimicrobial agents preferably derived from natural sources. New powerful antibacterial agents can be produced by simply combining oils that are known for their antibacterial activities. In this study, apricot seed oil (ASO), date seed oil (DSO), grape seed oil (GSO), and black seed oil (BSO) alone and in binary mixtures were assessed. Fatty acid profiles of individual oils and oil mixtures showed linoleic acid, oleic acid, palmitic acid, stearic acid, and linolenic acid contents. Linoleic acid was the most abundant fatty acid in all samples except for ASO, where oleic acid was the dominant one. GSO showed the highest total phenolic content while ASO showed the lowest one. Antibacterial screening was performed against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Results showed antibacterial activity in all oils against tested strains except for ASO against S. aureus. Highest antibacterial activity recorded was for ASO against P. mirabilis. ASO-GSO mixture (AG) was the best mixture where it showed synergistic interactions against all strains except P. aeruginosa. In conclusion, seed oil mixtures are likely to show promising antibacterial activities against specific strains.


Assuntos
Prunus armeniaca , Vitis , Ácido Linoleico , Staphylococcus aureus , Ácidos Graxos/farmacologia , Óleos de Plantas/farmacologia , Ácido Oleico/farmacologia , Antibacterianos/farmacologia , Sementes
9.
Heliyon ; 10(6): e27431, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509897

RESUMO

"Intensification of Vaporization by Decompression to the Vacuum" (IVDV) has initially emerged as a technology primarily employed for expanding and enhancing the texture of biological products. However, its recent applications have showcased significant promise in the realm of extracting bioactive molecules from various plant materials. In this context, optimization using response surface methodology was conducted to investigate the impact of IVDV pretreatment on the extractability of phenolic compounds from Eryngium creticum leaves and stems, as well as their biological activities. Using IVDV preceding the extraction led to higher total phenolic content (TPC) and enhanced antiradical activities in treated materials compared to untreated ones. The optimal processing conditions in terms of water content, steam pressure and treatment time were determined in order to maximize TPC (89.07 and 20.06 mg GAE/g DM in leaves and stems, respectively) and antiradical (DPPH) inhibition percentage (93.51% and 27.54% in leaves and stems, respectively). IVDV-treated extracts showed superior antioxidant, antibacterial and antibiofilm capacities compared to raw extracts. Using RP-UHPLC-PDA-MS, caffeic acid and rosmarinic acid were identified in IVDV-treated leaves. IVDV can be implemented as an innovative treatment applied prior to extraction to boost the recovery of biomolecules from plant matrices.

10.
Life (Basel) ; 13(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374071

RESUMO

Extraction of polyphenols from Centranthus longiflorus stems was conducted using ultrasound and infrared Ired-Irrad® techniques, and compared to the conventional water bath method. Response surface methodology was used to analyse the effect of time, temperature, and ethanol percentage, as well as to optimize the three extraction methods. The highest phenolic content (81 mg GAE/g DM) and antioxidant activity (76% DPPH inhibition) were recorded with the Ired-Irrad® extract obtained under the optimal conditions: 55 °C, 127 min, 48% (v/v) ethanol. Biological activities (antioxidant, antibacterial and antibiofilm) of the three extracts were assessed. All C. longiflorus stems extracts showed limited antibacterial effects regardless of the extraction method (MIC = 50 mg/mL), whereas Ired-Irrad® extract exhibited the highest biofilm eradication and prevention capacities (93% against Escherichia coli and 97% against Staphylococcus epidermidis, respectively). This bioactivity is likely related to abundant caffeoylquinic acid and quercetin rutinoside, as identified by RP-UHPLC-PDA-MS analysis. The results obtained further promote the effectiveness of Ired-Irrad® as a highly flexible and cost-efficient extraction technique.

11.
Ultrason Sonochem ; 82: 105895, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34972073

RESUMO

The influence of ultrasound treatment (US) on cellular damage of olive leaf tissue was studied. Mechanical damage and thermal effect of US were characterized. The level of tissue damage was defined by the diffusivity disintegration index ZD based on the diffusivity of solutes extracted from olive leaves differently treated. The Arrhenius form using the temperature dependences of the thermal treatment time within the temperature interval 20-90 °C was observed for the thermal process. The corresponding activation energy ΔUT was estimated as 57 kJ/mol. The temperature dependences of electrical conductivity were measured for extracts of intact and maximally treated olive leaves. Then the diffusivity disintegration index ZD and total phenolic compounds recovery for three studied US powers were calculated (100, 200, and 400 W). The results evidenced that the mechanically stimulated damage in olive leaf tissue can occur even at a low US power of 100 W if treatment time is long enough (t = 3.5 h). The US treatment noticeably accelerated the diffusion process mechanically in addition to its thermal effect. Trials in aqueous solution revealed the dependence of polyphenols extraction on damage level with respect to the US power applied.


Assuntos
Olea , Fenóis , Folhas de Planta , Polifenóis , Ultrassom
12.
Antioxidants (Basel) ; 11(7)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35883839

RESUMO

Grape seeds are agro-industrial by-products, which if improperly managed, may be responsible for socioeconomic and environmental problems. Nevertheless, it is possible to effectively valorize them by means of extraction of the bioactive compounds, especially the antioxidant phenolic molecules, using a safe, green, and environmentally-friendly extractive medium (i.e., hydro-glyceric solution). In the present study, the extraction was performed using seeds from two Lebanese varieties, Obeidi and Asswad Karech, and three international varieties, Marselan, Syrah, and Cabernet Franc. The type and amount of phenolic compounds were identified by High-Performance Liquid Chromatography (HPLC). Marselan was the extract richer in catechins (132.99 ± 9.81 µg/g of dried matter), and it also contained a higher amount of phenolic compounds (49.08 ± 0.03 mg of gallic acid equivalent/g of dry matter and 10.02 ± 0.24 mg of proanthocyanidin content/g of dry matter). The antioxidant capacity of the extracts was assessed using three different colorimetric assays including 2,2-DiPhenyl-1-PicrylHydrazyl (DPPH), CUPRIC ion Reducing Antioxidant Capacity (CUPRAC), and Ferric Reducing Antioxidant Power (FRAP). As expected, Marselan exhibited the highest antioxidant activity; as well, the total phenolic and proanthocyanidin content were the highest. The stability of the Marselan extract incorporated into a commercial cream, was performed at three different temperatures (4, 25, and 50 °C), and four different concentrations (5, 4, 3, 2%), over a period of 4 months, using different methods such as centrifugation, Heat-Shock Cycles, pH, and viscosity. All Marselan hydro-glyceric extract formulations were proven to be stable over the entire 4 months, where the highest stability was achieved at 4 °C and the least at 50 °C. This study supports the suitability of the incorporation of phenolic extracts into commercial creams to enrich the cosmetic industry with effective, natural, and safe skincare products.

13.
Plants (Basel) ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235324

RESUMO

(1) Background: Eryngium creticum is a plant medicinally valued, and used in pharmacopeia to treat various diseases. No previous studies have been reported on E. creticum leaf extracts using an IR-assisted technique; thus, this study aimed to intensify polyphenol extraction using Ired-Irrad®, comparing it to the conventional water bath (WB) method. (2) Methods: Optimization of polyphenol extraction from E. creticum leaves was conducted using Response Surface Methodology. Ired-Irrad® was used and compared to the WB method. The biological activities (antiradical, antioxidant, antibacterial, and antibiofilm) of both extracts were assessed. UHPLC analysis was performed to analyze the phytochemical profile of both extracts. (3) Results: Under optimal conditions, IR improved the polyphenol extraction yield by 1.7 times, while lowering ethanol consumption by 1.5 times. Regarding the antibacterial activity, both WB and IR E. creticum leaf extracts exhibited the highest antibacterial activity against Staphylococcus epidermidis. The maximum biofilm prevention capacity was also noticed against S. epidermidis. UHPLC-MS analysis quantified two major phenolic compounds in both extracts: rutin and sinapic acid. (4) Conclusions: Ired-Irrad® technology proved to be an effective technique in intensifying polyphenol recovery, while preserving their quantity and quality.

14.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365284

RESUMO

Grape seeds are the wineries' main by-products, and their disposal causes ecological and environmental problems. In this study seeds from the pomace waste of autochthonous grape varieties from Lebanon, Obeidi (white variety) and Asswad Karech (red variety) were used for a multi-step biomass fractionation. For the first step, a lipid extraction was performed, and the obtained yield was 12.33% (w/w) for Obeidi and 13.04% (w/w) for Asswad Karech. For the second step, polyphenols' recovery from the defatted seeds was carried out, resulting in 12.0% (w/w) for Obeidi and 6.6% (w/w) for Asswad Karech, with Obeidi's extract having the highest total phenolic content (333.1 ± 1.6 mg GAE/g dry matter) and antioxidant activity (662.17 ± 0.01 µg/mL of Trolox equivalent). In the third step, the defatted and dephenolized seeds were subsequently extracted under alkaline conditions and the proteins were isoelectric precipitated. The recovered protein extract was 3.90% (w/w) for Obeidi and 4.11% (w/w) for Asswad Karech seeds, with Asswad Karech's extract having the highest protein content (64 ± 0.2 mg protein/g dry matter). The remaining exhausted residue can be valorized in cosmetic scrubs formulations as a replacement for plastic microbeads. The designed zero-waste approach multi-step biomass fractionation has the potential to improve the valorization of the side products (grape seeds) of these two Lebanese autochthonous grape varieties.

15.
Mol Nutr Food Res ; 66(1): e2100670, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806294

RESUMO

Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Antioxidantes/farmacologia , Alimento Funcional , Polifenóis/metabolismo , Polifenóis/farmacologia
16.
Food Chem ; 342: 128236, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33092913

RESUMO

Impact of the "Intensification of Vaporization by Decompression to the Vacuum" (IVDV) on extraction of polyphenols from olive leaves was investigated. Using Response Surface Methodology, the effect of three variables were studied: initial water content of leaves, processing time and steam pressure on total phenolic content (TPC). Extractions of TPC from leaves were achieved either using 100% water as a solvent (w100), or 50% (v/v) aqueous ethanol (w50). Following IVDV pretreatment, TPC yields were enhanced with both solvents by approximately 3 times compared to the negative controls. Furthermore, oleuropein and hydroxytyrosol were intensified by up to 600% and 238% respectively. Antioxidant-antiradical assays revealed higher activities, up to 3.5 times, in extracts from IVDV-treated leaves. Calculation of the extraction indices Zp, reflecting cellular damage, confirmed the beneficial effect of IVDV on the extraction yield. Finally, Scanning Electron Microscopy (SEM) permitted the morphological observation of IVDV-treated as compared to untreated leaves.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Olea/química , Folhas de Planta/química , Polifenóis/química , Polifenóis/isolamento & purificação , Solventes/química , Glucosídeos Iridoides , Iridoides/química , Polifenóis/análise , Vácuo , Volatilização
17.
J Food Sci ; 85(2): 414-420, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31968404

RESUMO

This study aims to evaluate the impact of a nonconventional pretreatment technique "infrareds free solvent" on the intensification of polyphenols extraction from orange peels. Orange peels were pretreated with infrared heating using a ceramic infrared transmitter from 5 to 25 min at 50 °C. After the addition of the solvent on the pretreated peels, ultrasound treatment was applied on the mixture using an ultrasound generator connected to a titanium ultrasound probe, from 5 to 30 min, at 50 °C. Results showed that the application of ultrasounds on untreated peels enhanced the extraction of polyphenols by 62.5% compared to the conventional solid-liquid extraction. Twenty minutes of infrared pretreatment improved the extraction of polyphenols by 47% with solid-liquid extraction, and 112% with ultrasounds after 30 min compared to solid-liquid extraction from untreated peels. Different combinations of infrared pretreatment and ultrasound assisted extraction were then applied on orange peels. The most advantageous combination in terms of energy consumption and polyphenols extraction has been found for a 20 min infrared pretreatment time and 5 min ultrasound assisted extraction of polyphenols. PRACTICAL APPLICATION: Orange peels are valuable sources of natural antioxidants such as polyphenols. Ultrasound-assisted extraction can improve the extraction of polyphenols compared to conventional solid-liquid extraction. To intensify the extraction process, infrared heating can be used as a simple, low cost, and energy saving method. The combined effect of "infrareds free solvent" and ultrasounds allowed the extraction of the highest yields of polyphenols with a high antiradical capacity and a low energy consumption in comparison to conventional extraction.


Assuntos
Citrus sinensis/química , Frutas/efeitos da radiação , Extratos Vegetais/química , Polifenóis/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Citrus sinensis/efeitos da radiação , Frutas/química , Raios Infravermelhos , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação
18.
Pharmaceutics ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113923

RESUMO

An extract of Hypericum scruglii, an endangered endemic plant of Sardinia (Italy), was prepared and characterized. It was loaded in special phospholipid vesicles, glycerosomes, which were modified by adding maltodextrin (glucidex) and a polymer (gelatin or hyaluronan). The corresponding liposomes were also prepared and used as reference. The vesicles disclosed suitable physicochemical features for skin delivery. Indeed, their mean diameter ranged from 120 to 160 nm, they were homogeneously dispersed (polydispersity index ≤ 0.30), and their zeta potential was highly negative (~-45 mV). The vesicle dispersions maintained unchanged characteristics during 60 days of storage, were highly biocompatible, and were able to protect keratinocytes against damages due to oxidative stress induced by treating them with hydrogen peroxide. Vesicles were also capable of promoting cell proliferation and migration in vitro by means of a scratch wound assay. The results confirmed the fruitful delivery of the extract of H. scruglii in glycerosomes modified with glucidex and gelatin and their promising ability for skin protection and treatment.

19.
Antioxidants (Basel) ; 8(7)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323872

RESUMO

Optimization of infrared-assisted extraction was conducted using Response Surface Methodology (RSM) in order to intensify polyphenol recovery from olive leaves. The extraction efficiency using Ired-Irrad®, a newly-patented infrared apparatus (IR), was compared to water bath (WB) conventional extraction. Under optimal conditions, as suggested by the model and confirmed experimentally, the total phenolic content yield was enhanced by more than 30% using IR as contrasted to WB, which even required 27% more ethanol consumption. High Performance Liquid Chromatography analyses quantified the two major phenolic compounds of the leaves: Oleuropein and hydroxytyrosol, which were both intensified by 18% and 21%, respectively. IR extracts increased the antiradical activity by 25% and the antioxidant capacity by 51% compared to WB extracts. On the other hand, extracts of olive leaves obtained by both techniques exhibited equal effects regarding the inhibition of 20 strains of Staphylococcus aureus, with a minimum inhibitory concentration (MIC) varying between 3.125 and 12.5 mg/mL. Similarly, both extracts inhibited Aflatoxin B1 (AFB1) secretion by Aspergillus flavus, with no growth inhibition of the fungus. Finally, optimization using RSM allowed us to suggest other IR operating conditions aiming at significantly reducing the consumption of energy and solvent, while maintaining similar quantity and quality of phenolic compounds as what is optimally obtained using WB.

20.
Food Chem ; 295: 165-171, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174746

RESUMO

Deep eutectic solvents (DES) and aqueous glycerol were proposed as green alternatives to conventional solvents for the extraction of polyphenols from grapefruit peels. In order to increase the extraction kinetics and yields of polyphenols, high voltage electrical discharges (HVED) were used as a pre-treatment technology (energy varied between 7.27 and 218 kJ/kg). Results showed that the HVED energy input can be reduced, when the subsequent solid-liquid extraction was performed in 20% (w/v) aqueous glycerol or in DES (lactic acid: glucose) instead of water. The addition of glycerol has reduced the energy of the pre-treatment by 6 times. The same diffusivity of polyphenols (4 × 10-11 m2/s) was obtained in water from HVED pre-treated peels at 218 kJ/kg and in aqueous glycerol from pre-treated peels at 36 kJ/kg. The solubility of naringin, the main flavonoid compound of grapefruit peels in the solvents, was investigated through a theoretical modelling of its Hansen solubility parameters.


Assuntos
Citrus paradisi/química , Glicerol/química , Polifenóis/isolamento & purificação , Solventes/química , Cromatografia Líquida de Alta Pressão , Citrus paradisi/metabolismo , Eletricidade , Flavanonas/química , Flavonoides/química , Glucose/química , Ácido Láctico/química , Extração Líquido-Líquido , Polifenóis/análise , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA