Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(24): 39395-39405, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809305

RESUMO

Recent theoretical studies proposed that two-dimensional (2D) GaGeTe crystals have promising high detection sensitivity at infrared wavelengths and can offer ultra-fast operation. This can be attributed to their small optical bandgap and high carrier mobility. However, experimental studies on GaGeTe in the infrared region are lacking and this exciting property has not been explored yet. In this work, we demonstrate a short-wavelength infrared (SWIR) photodetector based on a multilayer (ML) GaGeTe field-effect transistor (FET). Fabricated devices show a p-type behavior at room temperature with a hole field-effect mobility of 8.6 - 20 cm2 V-1s-1. Notably, under 1310 nm illumination, the photo responsivities and noise equivalent power of the detectors with 65 nm flake thickness can reach up to 57 A/W and 0.1 nW/Hz1/2, respectively, at a drain-source bias (Vds) = 2 V. The frequency responses of the photodetectors were also measured with a 1310 nm intensity-modulated light. Devices exhibit a response up to 100 MHz with a 3dB cut-off frequency of 0.9 MHz. Furthermore, we also tested the dependence of the device frequency response on the applied bias and gate voltages. These early experimental findings stimulate the potential use of multilayer GaGeTe for highly sensitive and ultrafast photodetection applications.

2.
Phys Chem Chem Phys ; 19(26): 16989-16999, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28597895

RESUMO

Photocatalytic nanostructures loaded with metallic nanoparticles are being considered as a potential candidate for designing efficient water splitting devices. Here, we aim to unveil the plasmonic behavior of a device made of Au-TiO2 nanostructures through in-depth investigations combining electron energy loss spectroscopy (EELS) and cathodoluminescence (CL). The experiments confirm the existence of Au bulk plasmon excitation, intrinsic interband transitions, and plasmon losses over a wide range of energies (0.6-2.4 eV). Depending on the size and the shape of the obtained nanostructures, such as fishing hook (FH), asymmetric nanorod (AR), and a/symmetric nanoparticles, in our devices, the dephasing times and the quality factors of the modes vary. Finite difference time domain simulations were then carried out on FH and AR structures. These simulations indicate good agreement between the electric field enhancement and the obtained plasmon excitation as observed in EELS. Moreover, the plasmonic activity obtained by CL and EELS was correlated with the photocurrent measurements recorded with the device, which confirmed that the localized plasmons in Au generate hot electrons and enhance the photoresponse of the device. This study confirms the functionality of the metal dielectric photocatalyst device over a wide range of wavelengths ranging from UV to near IR.

3.
Beilstein J Nanotechnol ; 15: 817-829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979524

RESUMO

Visible-light-driven photocatalysis using layered materials has garnered increasing attention regarding the degradation of organic dyes. Herein, transition-metal dichalcogenides MoS2 and WS2 prepared by chemical vapor deposition as well as their intermixing are evaluated for photodegradation (PD) of methylene blue under solar simulator irradiation. Our findings revealed that WS2 exhibited the highest PD efficiency of 67.6% and achieved an impressive PD rate constant of 6.1 × 10-3 min-1. Conversely, MoS2 displayed a somewhat lower PD performance of 43.5% but demonstrated remarkable stability. The intriguing result of this study relies on the synergetic effect observed when both MoS2 and WS2 are combined in a ratio of 20% of MoS2 and 80% of WS2. This precise blend resulted in an optimized PD efficiency and exceptional stability reaching 97% upon several cycles. This finding underscores the advantageous outcomes of intermixing WS2 and MoS2, shedding light on the development of an efficient and enduring photocatalyst for visible-light-driven photodegradation of methylene blue.

4.
Nanoscale Adv ; 5(3): 869-878, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756517

RESUMO

The potential use of down-sized BFO-xSTO systems (x ≤ 25%) as highly efficient photoanodes for photocatalytic water splitting is investigated. BFO-xSTO is prepared by a solid-state method and subsequently deposited by spray coating. The compounds possess rhombohedral symmetry for x ≤ 15% and phase coexistence for x > 15%, as demonstrated by Raman spectroscopy and transmission electron microscopy. Our findings revealed a drastic grain size decrease with increasing STO content, namely 260 nm for BFO to 50 nm for BFO with 25% STO. Moreover, BFO-xSTO, x > 10% exhibited high optical absorption (> 80%) in the full spectrum and interestingly a very promising band alignment with water redox potentials. Moreover, the photochemical measurements revealed a photocurrent density of ∼0.17 µA cm-2 achieved for x = 15% at 0 bias. Using DFT calculations, the substitution effects on the electronic, optical, and photocatalytic performances of the BFO system were investigated and quantified. Surprisingly, a high hydrogen yield (∼191 µmol g-1) was achieved by BFO-12.5%STO compared to 1 µmol g-1 and 57 µmol g-1 for BFO and STO, respectively. This result highlights the beneficial effects of both the downsizing and substitution of BFO on the photocatalytic water splitting and hydrogen production performances of Bi1-x Sr x Fe1-x Ti x O3 systems.

5.
Nanomaterials (Basel) ; 13(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947708

RESUMO

Aiming to improve the photocatalytic properties of transition metal perovskites to be used as robust photoanodes, [LaFeO3]1-x/[SrTiO3]x nanocomposites (LFO1-x/STOx) are considered. This hybrid structure combines good semiconducting properties and an interesting intrinsic remanent polarization. All the studied samples were fabricated using a solid-state method followed by high-energy ball milling, and they were subsequently deposited by spray coating. The synthesized compounds were demonstrated to possess orthorhombic (Pnma) and cubic (Pm3¯m) structures for LFO and STO, respectively, with an average grain size of 55-70 nm. The LFO1-x/STOx nanocomposites appeared to exhibit high visible light absorption, corresponding to band gaps of 2.17-3.21 eV. Our findings show that LFO0.5/STO0.5 is the optimized heterostructure; it achieved a high photocurrent density of 11 µA/cm2 at 1.23 V bias vs. RHE and an applied bias photo-to-current efficiency of 4.1 × 10-3% at 0.76 V vs. RHE, as demonstrated by the photoelectrochemical measurements. These results underline the role of the two phases intermixing LFO and STO at the appropriate content to yield a high-performing photoanode ascribed to efficient charge separation and transfer. This suggests that LFO0.5/STO0.5 could be a potential candidate for the development of efficient photoanodes for hydrogen generation via photoelectrocatalytic water splitting.

6.
Ultramicroscopy ; 235: 113496, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35245872

RESUMO

Plan-view transmission electron microscopy (TEM) or electron diffraction imaging of a bulk or 2D material can provide detailed information about the structural or atomic arrangement in the material. A systematic and easily implementable approach to preparing site-specific plan-view TEM samples for 2D thin film materials using FIB is discussed that could be routinely used. The methodology has been successfully applied to prepare samples from 2D materials such as, MoS2 thin film, vertically oriented graphene film (VG), as well as heterostructure material SnTiS3. It is worth mentioning that in contrast to planar conventional graphene, VG grows vertically from the substrate and takes nanosheet arrays. Samples prepared using this methodology provide a simple, faster, and precise course in obtaining valuable structural information. The top-view imaging offers various information about the growth nature of the materials suggesting the efficiency of the sample preparation process.

7.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615933

RESUMO

Layered transition metals dichalcogenides such as MoS2 and WS2 have shown a tunable bandgap, making them highly desirable for optoelectronic applications. Here, we report on one-step chemical vapor deposited MoS2, WS2 and MoxW1-xS2 heterostructures incorporated into photoconductive devices to be examined and compared in view of their use as potential photodetectors. Vertically aligned MoS2 nanosheets and horizontally stacked WS2 layers, and their heterostructure form MoxW1-xS2, exhibit direct and indirect bandgap, respectively. To analyze these structures, various characterization methods were used to elucidate their properties including Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectrometry and high-resolution transmission electron microscopy. While all the investigated samples show a photoresponse in a broad wavelength range between 400 nm and 700 nm, the vertical MoS2 nanosheets sample exhibits the highest performances at a low bias voltage of 5 V. Our findings demonstrate a responsivity and a specific detectivity of 47.4 mA W-1 and 1.4 × 1011 Jones, respectively, achieved by MoxW1-xS2. This study offers insights into the use of a facile elaboration technique for tuning the performance of MoxW1-xS2 heterostructure-based photodetectors.

8.
Nanomaterials (Basel) ; 12(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683769

RESUMO

Tungsten disulfide nanosheets were successfully prepared by one-step chemical vapor deposition using tungsten oxide and thiourea in an inert gas environment. The size of the obtained nanosheets was subsequently reduced down to below 20 nm in width and 150 nm in length using high-energy ball milling, followed by 0.5 and 1 wt% graphene loading. The corresponding vibrational and structural characterizations are consistent with the fabrication of a pure WS2 structure for neat sampling and the presence of the graphene characteristic vibration modes in graphene@WS2 compounds. Additional morphological and crystal structures were examined and confirmed by high-resolution electron microscopy. Subsequently, the investigations of the optical properties evidenced the high optical absorption (98%) and lower band gap (1.75 eV) for the graphene@WS2 compared to the other samples, with good band-edge alignment to water-splitting reaction. In addition, the photoelectrochemical measurements revealed that the graphene@WS2 (1 wt%) exhibits an excellent photocurrent density (95 µA/cm2 at 1.23 V bias) compared with RHE and higher applied bias potential efficiency under standard simulated solar illumination AM1.5G. Precisely, graphene@WS2 (1 wt%) exhibits 3.3 times higher performance compared to pristine WS2 and higher charge transfer ability, as measured by electrical impedance spectroscopy, suggesting its potential use as an efficient photoanode for hydrogen evolution reaction.

9.
Nanotechnology ; 22(48): 485302, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22056594

RESUMO

Electron-and ion-induced bending (EIB/IIB) phenomena have been studied in self-supported polycrystalline metallic and metal-amorphous bilayered nanocantilevers. The experiments reveal many interesting facts regarding electron/ion-matter interaction, which builds a proper foundation for the understanding of the phenomenon. The mechanism for bending of metallic cantilevers has been proposed to be primarily due to void-induced stress generation during ion beam irradiation. On the other hand, thermal effects have been found to play the dominant role in the case of bending of bilayer (amorphous-metal) nanocantilevers. The instantaneous, reversible, highly controllable and permanent nature of the process has been exploited to fabricate several complicated nanostructures in three dimensions. IIB of the fabricated cantilevers is shown to have a high precession mass sensing aptitude, capable of detecting a change in mass of the order of femtograms.

10.
RSC Adv ; 11(44): 27381-27405, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35480691

RESUMO

Holey or porous graphene, a structural derivative of graphene, has attracted immense attention due to its unique properties and potential applications in different branches of science and technology. In this review, the synthesis methods of holey or porous graphene/graphene oxide are systematically summarized and their potential applications in different areas are discussed. The process-structure-applications are explained, which helps relate the synthesis approaches to their corresponding key applications. The review paper is anticipated to benefit the readers in understanding the different synthesis methods of holey graphene, their key parameters to control the pore size distribution, advantages and limitations, and their potential applications in various fields.

11.
Nanomaterials (Basel) ; 10(11)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203122

RESUMO

Plasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron-hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties leading to efficient water splitting such as production and transport of hot electrons through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of plasmon-assisted catalysts.

12.
Nanotechnology ; 20(27): 275301, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19528677

RESUMO

We report that during focused ion beam chemical vapor deposition (FIB-CVD) the effect of deposition is not limited to the area where the ion beam scanning takes place but occurs on regions which are out of sight of the incident beam and extends up to several micrometers away from the specified site. This phenomenon has deleterious effects, especially when the nanocontacts are fabricated for the electrical characterization of the nanodevices. The deposition occurs into the gap between the contact pads and acts as a resistance in parallel with the resistance of the nanostructure to be measured. The extended deposition has been explained on the basis of molecular cracking of the precursor gas molecules induced by forward scattered Ga ions, and appropriate measures to remove the effect have been suggested.

13.
Beilstein J Nanotechnol ; 9: 1686-1694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977702

RESUMO

Densely populated edge-terminated vertically aligned two-dimensional MoS2 nanosheets (NSs) with thicknesses ranging from 5 to 20 nm were directly synthesized on Mo films deposited on SiO2 by sulfurization. The quality of the obtained NSs was analyzed by scanning electron and transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The as-grown NSs were then successfully transferred to the substrates using a wet chemical etching method. The transferred NSs sample showed excellent field-emission properties. A low turn-on field of 3.1 V/µm at a current density of 10 µA/cm2 was measured. The low turn-on field is attributed to the morphology of the NSs exhibiting vertically aligned sheets of MoS2 with sharp and exposed edges. Our findings show that the fabricated MoS2 NSs could have a great potential as robust high-performance electron-emitter material for various applications such as microelectronics and nanoelectronics, flat-panel displays and electron-microscopy emitter tips.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA