Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298529

RESUMO

In the development of therapeutic strategies for human diseases, preclinical experimental models have a key role. However, the preclinical immunomodulatory therapies developed using rodent sepsis were not successful in human clinical trials. Sepsis is characterized by a dysregulated inflammation and redox imbalance triggered by infection. Human sepsis is simulated in experimental models using methods that trigger inflammation or infection in the host animals, most often mice or rats. It remains unknown whether the characteristics of the host species, the methods used to induce sepsis, or the molecular processes focused upon need to be revisited in the development of treatment methods that will succeed in human clinical trials. Our goal in this review is to provide a survey of existing experimental models of sepsis, including the use of humanized mice and dirty mice, and to show how these models reflect the clinical course of sepsis. We will discuss the strengths and limitations of these models and present recent advances in this subject area. We maintain that rodent models continue to have an irreplaceable role in studies toward discovering treatment methods for human sepsis.


Assuntos
Roedores , Sepse , Humanos , Ratos , Camundongos , Animais , Sepse/terapia , Inflamação , Modelos Animais de Doenças , Ligadura/métodos , Ceco
2.
Kidney Int ; 94(2): 280-291, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29731111

RESUMO

To investigate the role of protein kinase C-α (PKC-α) in glomerulonephritis, the capacity of PKC-α inhibition to reverse the course of established nephrotoxic nephritis (NTN) was evaluated. Nephritis was induced by a single injection of nephrotoxic serum and after its onset, a PKC-α inhibitor was administered either systemically or by targeted glomerular delivery. By day seven, all mice with NTN had severe nephritis, whereas mice that received PKC-α inhibitors in either form had minimal evidence of disease. To further understand the underlying mechanism, label-free shotgun proteomic analysis of the kidney cortexes were performed, using quantitative mass spectrometry. Ingenuity pathway analysis revealed 157 differentially expressed proteins and mitochondrial dysfunction as the most modulated pathway. Functional protein groups most affected by NTN were mitochondrial proteins associated with respiratory processes. These proteins were down-regulated in the mice with NTN, while their expression was restored with PKC-α inhibition. This suggests a role for proteins that regulate oxidative phosphorylation in recovery. In cultured glomerular endothelial cells, nephrotoxic serum caused a decrease in mitochondrial respiration and membrane potential, mitochondrial morphologic changes and an increase in glycolytic lactic acid production; all normalized by PKC-α inhibition. Thus, PKC-α has a critical role in NTN progression, and the results implicate mitochondrial processes through restoring oxidative phosphorylation, as an essential mechanism underlying recovery. Importantly, our study provides additional support for targeted therapy to glomeruli to reverse the course of progressive disease.


Assuntos
Glomerulonefrite/tratamento farmacológico , Proteína Quinase C-alfa/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Autoantígenos/imunologia , Colágeno Tipo IV/imunologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Feminino , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Hibridomas , Soros Imunes/administração & dosagem , Soros Imunes/imunologia , Fragmentos de Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteína Quinase C-alfa/imunologia , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(10 Pt B): 2526-2533, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28844961

RESUMO

The regulation of mitochondrial function is critical in cellular homeostasis following hemorrhagic shock. Hemorrhagic shock results in fluid loss and reduced availability of oxygen and nutrients to tissues. The spleen is a secondary lymphoid organ playing a key role in 'filtering the blood' and in the innate and adaptive immune responses. To understand the molecular basis of hemorrhagic shock, we investigated the changes in splenocyte mitochondrial respiration, and concomitant immune and metabolic alterations. The hemorrhagic injury (HI) in our rat model was induced by bleeding 60% of the total blood volume followed by resuscitation with Ringers lactate. Another group of animals was subjected to hemorrhage, but did not receive fluid resuscitation. Oxygen consumption rate of splenocytes were determined using a Seahorse analyzer. We found a significantly reduced oxygen consumption rate in splenocytes following HI compared to sham operated rats. The mitochondrial stress test revealed a decreased basal oxygen consumption rate, ATP production, maximal respiration and spare respiratory capacity. The mitochondrial membrane potential, and citrate synthase activity, were also reduced in the splenocytes following HI. Hypoxic response in the splenocyte was confirmed by increased gene expression of Hif1α. Elevated level of mitochondrial stress protein, hsp60 and induction of high mobility group box1 protein (HMGB1) were observed in splenocytes following HI. An increased inflammatory response was demonstrated by significantly increased expression of IL-6, IFN-ß, Mip-1α, IL-10 and NFκbp65. In summary, we conclude that splenocyte oxidative phosphorylation and metabolism were severely compromised following HI.


Assuntos
Trifosfato de Adenosina/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Consumo de Oxigênio , Choque Hemorrágico/metabolismo , Animais , Chaperonina 60/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/patologia , Baço , Fator de Transcrição RelA/metabolismo
4.
Biochim Biophys Acta ; 1852(11): 2442-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303641

RESUMO

Sirtuins or Sir2 family of proteins are a class of NAD(+) dependent protein deacetylases which are evolutionarily conserved from bacteria to humans. Some sirtuins also exhibit mono-ADP ribosyl transferase, demalonylation and desuccinylation activities. Originally identified in the yeast, these proteins regulate key cellular processes like cell cycle, apoptosis, metabolic regulation and inflammation. Humans encode seven sirtuin isoforms SIRT1-SIRT7 with varying intracellular distribution. Apart from their classic role as histone deacetylases regulating transcription, a number of cytoplasmic and mitochondrial targets of sirtuins have also been identified. Sirtuins have been implicated in longevity and accumulating evidence indicate their role in a spectrum of diseases like cancer, diabetes, obesity and neurodegenerative diseases. A number of studies have reported profound changes in SIRT1 expression and activity linked to mitochondrial functional alterations following hypoxic-ischemic conditions and following reoxygenation injury. The SIRT1 mediated deacetylation of targets such as PGC-1α, FOXO3, p53 and NF-κb has profound effect on mitochondrial function, apoptosis and inflammation. These biological processes and functions are critical in life-span determination and outcome following injury. Aging is reported to be characterized by declining SIRT1 activity, and its increased expression or activation demonstrated prolonged life-span in lower forms of animals. A pseudohypoxic state due to declining NAD(+) has also been implicated in aging. In this review we provide an overview of studies on the role of sirtuins in aging and injury.

5.
Cytokine ; 81: 35-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26851979

RESUMO

Hemorrhage is one of the leading causes of death in patients with trauma. We recently demonstrated that resveratrol can improve cardiac function and prolong life following severe hemorrhagic injury (HI) in a rat model. The present work is focused on determining changes in NF-κB dependent gene expression in the heart and the systemic cytokine milieu following HI and the effect of resveratrol treatment. The results indicate an increase in phosphorylated NF-κB in the heart with a concomitant increase in the expression of NF-κB dependent genes following HI. There was also a significant increase of systemic cytokine levels, both pro and anti-inflammatory, following HI and resolution when treated with resveratrol. This study demonstrates the potential role NF-κB has in the physiological response to HI and the effectiveness of resveratrol in reducing immune activation.


Assuntos
Citocinas/metabolismo , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Estilbenos/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Western Blotting , Quimiocina CCL3/sangue , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Citocinas/sangue , Citocinas/genética , Expressão Gênica/efeitos dos fármacos , Interleucina-10/sangue , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-2/sangue , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Miocárdio/metabolismo , Ratos Sprague-Dawley , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Hemorrágico/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Mol Med ; 21: 305-12, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25879628

RESUMO

Resveratrol has been shown to potentiate mitochondrial function and extend longevity; however, there is no evidence to support whether resveratrol can improve survival or prolong life following hemorrhagic shock. We sought to determine whether (a) resveratrol can improve survival following hemorrhage and resuscitation and (b) prolong life in the absence of resuscitation. Using a hemorrhagic injury (HI) model in the rat, we describe for the first time that the naturally occurring small molecule, resveratrol, may be an effective adjunct to resuscitation fluid. In a series of three sets of experiments we show that resveratrol administration during resuscitation improves survival following HI (p < 0.05), resveratrol and its synthetic mimic SRT1720 can significantly prolong life in the absence of resuscitation fluid (<30 min versus up to 4 h; p < 0.05), and resveratrol as well as SRT1720 restores left ventricular function following HI. We also found significant changes in the expression level of mitochondria-related transcription factors Ppar-α and Tfam, as well as Pgc-1α in the left ventricular tissues of rats subjected to HI and treated with resveratrol. The results indicate that resveratrol is a strong candidate adjunct to resuscitation following severe hemorrhage.


Assuntos
Choque Hemorrágico/mortalidade , Estilbenos/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Modelos Animais de Doenças , Estimativa de Kaplan-Meier , Masculino , Mortalidade , Miocárdio/metabolismo , Ratos , Resveratrol , Índice de Gravidade de Doença , Choque Hemorrágico/diagnóstico , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/etiologia , Estilbenos/administração & dosagem , Fatores de Tempo
7.
Mol Med ; 20: 10-6, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24395567

RESUMO

Severe hemorrhage leads to decreased blood flow to tissues resulting in decreased oxygen and nutrient availability affecting mitochondrial function. A mitoscriptome profiling study demonstrated alteration in several genes related to mitochondria, consistent with the mitochondrial functional decline observed after trauma hemorrhage (T-H). Our experiments led to the identification of sirtuin 1 (SIRT1) as a potential target in T-H. Administration of resveratrol (a naturally occurring polyphenol and activator of SIRT1) after T-H improved left ventricular function and tissue ATP levels. Our hypothesis was that mitochondrial function after T-H depends on SIRT1 activity. In this study, we evaluated the activity of SIRT1, a mitochondrial functional modulator, and the mitochondrial-glycolytic balance after T-H. We determined the changes in protein levels of pyruvate dehydrogenase kinase (PDK)-1 and nuclear c-Myc, peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and NF-E2-related factor (NRF)2 after T-H and after treatment with resveratrol or a combination of sirtinol (a SIRT1 inhibitor) and resveratrol. We have also tested the activity of mitochondrial complex 1. SIRT1 enzyme activity was significantly decreased after T-H, whereas resveratrol treatment restored the activity. We found elevated PDK1 and c-Myc levels and decreased PGC-1α, NRF2 and mitochondrial complex I activity after T-H. The reduced SIRT1 activity after T-H may be related to declining mitochondrial function, since resveratrol was able to reinstate SIRT1 activity and mitochondrial function. The elevated level of PDK1 (an inhibitor of pyruvate dehydrogenase complex) after T-H indicates a possible shift in cellular energetics from mitochondria to glycolysis. In conclusion, SIRT1 modulation alters left ventricular function after T-H through regulation of cellular energetics.


Assuntos
Hemorragia/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hemorragia/genética , Hemorragia/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Ratos Sprague-Dawley , Resveratrol , Sirtuína 1/genética
8.
Mol Neurobiol ; 61(1): 476-486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37632678

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in the aging population. The pathological characteristics include extracellular senile plaques and intracellular neurofibrillary tangles. In addition, mitochondrial dysfunction, oxidative stress, and neuroinflammation contribute to AD pathogenesis. In this study, we sought to determine the crosstalk between different pathways in the brain of 5XFAD mice, a mouse model for amyloid pathology, by RNA-seq analysis. We observed significant changes in the expression of genes (1288 genes; adj p value < 0.05; log2-fold > 1 and < 1) related to pathways including oxidation-reduction, oxidative phosphorylation, innate immune response, ribosomal protein synthesis, and ubiquitin proteosome system. The most striking feature was the downregulation of genes related to oxidation-reduction process with changes in the expression of a large number of mitochondrial genes. We also observed an upregulation of several immune response genes. Gene interaction network of oxidation-reduction related genes further confirmed a tight cluster of mitochondrial genes. Furthermore, gene interaction analysis of all the 1288 genes showed at least three distinct interaction clusters, with the predominant one relating to cellular energetics. In summary, we identified 1288 genes distinctly different in the 5XFAD brain compared to the WT brain and found cellular energetics to be the most distinct gene cluster in the AD mouse brain.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Família Multigênica , Peptídeos beta-Amiloides/metabolismo
9.
Cytokine ; 61(3): 724-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23357298

RESUMO

In a microarray analysis of human retinal pigment epithelial cells (HRPE) treated with TGF-ß, in addition to the alteration of a number of known Extracellular matrix (ECM)-related genes regulated by TGF-ß, we found a significant increase in the expression of Kallmann Syndrome (KAL)-1 gene, that codes for the protein anosmin-1. Enhanced expression of KAL-1 by TGF-ß was validated by real-time PCR analysis. In in vitro experiments, TGF-ß receptor inhibitor abolished TGF-ß-induced expression of KAL-1. Immunofluorescence staining showed increased presence of anosmin-1 in TGF-ß treated HRPE cells, with distinct localization at the intercellular junctions. Treatment of HRPE cells with TGF-ß enhanced secretion of anosmin-1 and the release of anosmin-1 was further augmented by heparin sulfate. Enhanced secretion of anosmin-1 in the presence of TGF-ß and heparin was also observed in other ocular cells such as corneal epithelial and corneal fibroblast cultures. The role of anosmin-1, a protein with adhesion functions, in retinal structure, function and pathology has not been known and remains to be investigated.


Assuntos
Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Epitélio Pigmentado Ocular/citologia , Fator de Crescimento Transformador beta/farmacologia , Células Epiteliais/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Humanos , Immunoblotting , Proteínas do Tecido Nervoso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
10.
Arthritis Rheum ; 64(12): 4094-103, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22941914

RESUMO

OBJECTIVE: In sporadic inclusion body myositis (IBM), inflammation and accumulation of ß-amyloid-associated molecules cause muscle fiber damage. We undertook this study to determine why intravenous immunoglobulin (IVIG) and prednisone are not effective in sporadic IBM despite their effectiveness in other inflammatory myopathies. METHODS: Relevant inflammatory and degeneration- associated markers were assessed by quantitative polymerase chain reaction and immunohistochemistry in repeated muscle biopsy specimens from patients with sporadic IBM treated in a controlled study with IVIG and prednisone (n = 5) or with prednisone alone (n = 5). Functional effects were assessed in a muscle cell culture model. RESULTS: In muscle biopsy specimens, messenger RNA (mRNA) expression of the proinflammatory chemokines CXCL9, CCL3, and CCL4 and of the cytokines interferon-γ (IFNγ), transforming growth factor ß, interleukin-10 (IL-10), and IL-1ß was significantly reduced after treatment in both groups. No consistent changes were observed for tumor necrosis factor α, IL-6, inducible costimulator (ICOS), its ligand ICOSL, and perforin. Messenger RNA expression of the degeneration-associated molecule ubiquitin and the heat-shock protein αB-crystallin was also reduced, but no changes were noted for amyloid precursor protein (APP) or desmin. By immunohistochemistry, a significant down-modulation of chemokines was observed, but not of inducible nitric oxide (NO) synthase, nitrotyrosine, IL-1ß, APP, and ubiquitin; ß-amyloid was reduced in 6 of 10 patients. Pronounced staining of IgG was observed in the muscle after treatment with IVIG, indicating penetration of infused IgG into the muscle and a possible local effect. In muscle cells exposed to IFNγ plus IL-1ß, IgG and/or prednisone down-regulated mRNA expression of IL-1ß 2.5-fold. Accumulation of ß-amyloid, overexpression of αB-crystallin, and cell death were prevented. In contrast, NO-associated cell stress remained unchanged. CONCLUSION: IVIG and prednisone reduce some inflammatory and degenerative molecules in muscle of patients with sporadic IBM and in vitro, but do not sufficiently suppress myotoxic and cell stress mediators such as NO. The data provide an explanation for the resistance of sporadic IBM to immunotherapy and identify markers that may help to design novel treatment strategies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Inflamação/metabolismo , Miosite de Corpos de Inclusão/terapia , Prednisona/uso terapêutico , Biópsia , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Quimioterapia Combinada , Humanos , Imunoterapia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miosite de Corpos de Inclusão/metabolismo , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Resultado do Tratamento
11.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166769, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37263447

RESUMO

Dichloroacetate (DCA) is a naturally occurring xenobiotic that has been used as an investigational drug for over 50 years. Originally found to lower blood glucose levels and alter fat metabolism in diabetic rats, this small molecule was found to serve primarily as a pyruvate dehydrogenase kinase inhibitor. Pyruvate dehydrogenase kinase inhibits pyruvate dehydrogenase complex, the catalyst for oxidative decarboxylation of pyruvate to produce acetyl coenzyme A. Several congenital and acquired disease states share a similar pathobiology with respect to glucose homeostasis under distress that leads to a preferential shift from the more efficient oxidative phosphorylation to glycolysis. By reversing this process, DCA can increase available energy and reduce lactic acidosis. The purpose of this review is to examine the literature surrounding this metabolic messenger as it presents exciting opportunities for future investigation and clinical application in therapy including cancer, metabolic disorders, cerebral ischemia, trauma, and sepsis.


Assuntos
Diabetes Mellitus Experimental , Ratos , Animais , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Oxirredutases
12.
Biochim Biophys Acta ; 1812(11): 1446-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21554952

RESUMO

Trauma-hemorrhage (T-H) causes hypoxia and organ dysfunction. Mitochondrial dysfunction is a major factor for cellular injury due to T-H. Aging also has been known to cause progressive mitochondrial dysfunction. In order to study the effect of aging on T-H-induced mitochondrial dysfunction, we recently developed a rodent mitochondrial genechip with probesets representing mitochondrial and nuclear genes contributing to mitochondrial structure and function. Using this chip we recently identified signature mitochondrial genes altered following T-H in 6 and 22 month old rats; augmented expression of the transcription factor c-myc was the most pronounced. Based on reports of c-myc-IL6 collaboration and c-myc-Sirt1 negative regulation, we further investigated the expression of these regulatory factors with respect to aging and injury. Rats of ages 6 and 22 months were subjected to T-H or sham operation and left ventricular tissues were tested for cytosolic cytochrome c, mtDNA content, Sirt1 and mitochondrial biogenesis factors Foxo1, Ppara and Nrf-1. We observed increased cardiac cytosolic cytochrome c (sham vs T-H, p<0.03), decreased mitochondrial DNA content (sham vs T-H, p<0.05), and decreased Sirt1 expression (sham vs TH, p<0.05) following T-H and with progressing age. Additionally, expression of mitochondrial biogenesis regulating transcription factors Foxo1 and Nrf-1 was also decreased with T-H and aging. Based upon these observations we conclude that Sirt1 expression is negatively modulated by T-H causing downregulation of mitochondrial biogenesis. Thus, induction of Sirt1 is likely to produce salutary effects following T-H induced injury and hence, Sirt1 may be a potential molecular target for translational research in injury resolution.


Assuntos
Envelhecimento/patologia , Hemorragia/patologia , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuína 1/metabolismo , Ferimentos e Lesões/patologia , Envelhecimento/metabolismo , Animais , Western Blotting , Núcleo Celular , Citocromos c/metabolismo , Citosol/metabolismo , DNA Mitocondrial/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Ventrículos do Coração/metabolismo , Hemorragia/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Sirtuína 1/genética , Ferimentos e Lesões/metabolismo
13.
Mol Med ; 18: 209-14, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22113495

RESUMO

Mitochondria play a critical role in metabolic homeostasis of a cell. Our recent studies, based on the reported interrelationship between c-Myc and Sirt1 (mammalian orthologue of yeast sir2 [silent information regulator 2]) expression and their role in mitochondrial biogenesis and function, demonstrated a significant downregulation of Sirt1 protein expression and an upregulation of c-Myc following trauma-hemorrhage (T-H). Activators of Sirt1 are known to improve mitochondrial function and the naturally occurring polyphenol resveratrol (RSV) has been shown to significantly increase Sirt1 activity by increasing its affinity to both NAD+ and the acetylated substrate. In this study we tested the salutary effect of RSV following T-H and its influence on Sirt1 expression. Rats were subjected to T-H or sham operation. RSV (8 mg/kg body weight, intravenously) or vehicle was administered 10 min after the onset of resuscitation, and the rats were killed 2 h following resuscitation. Sirtinol, a Sirt1 inhibitor, was administered 5 min prior to RSV administration. Cardiac contractility (±dP/dt) was measured and heart tissue was tested for Sirt1, Pgc-1α, c-Myc, cytosolic cytochrome C expression and ATP level. Left ventricular function, after T-H, was improved (P < 0.05) following RSV treatment, with significantly elevated expression of Sirt1 (P < 0.05) and Pgc-1α (P < 0.05), and decreased c-Myc (P < 0.05). We also observed significantly higher cardiac ATP content, declined cytosolic cytochrome C and decreased plasma tumor necrosis factor-α in the T-H-RSV group. The salutary effect due to RSV was abolished by sirtinol, indicating a Sirt1-mediated effect. We conclude that RSV may be a useful adjunct to resuscitation fluid following T-H.


Assuntos
Hemorragia/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/uso terapêutico , Ferimentos e Lesões/complicações , Animais , Benzamidas/uso terapêutico , Western Blotting , Ensaio de Imunoadsorção Enzimática , Masculino , Naftóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Resveratrol
15.
Metabolism ; 126: 154923, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743990

RESUMO

More than a century after discovering NAD+, information is still evolving on the role of this molecule in health and diseases. The biological functions of NAD+ and NAD+ precursors encompass pathways in cellular energetics, inflammation, metabolism, and cell survival. Several metabolic and neurological diseases exhibit reduced tissue NAD+ levels. Significantly reduced levels of NAD+ are also associated with aging, and enhancing NAD+ levels improved healthspan and lifespan in animal models. Recent studies suggest a causal link between senescence, age-associated reduction in tissue NAD+ and enzymatic degradation of NAD+. Furthermore, the discovery of transporters and receptors involved in NAD+ precursor (nicotinic acid, or niacin, nicotinamide, and nicotinamide riboside) metabolism allowed for a better understanding of their role in cellular homeostasis including signaling functions that are independent of their functions in redox reactions. We also review studies that demonstrate that the functional effect of niacin is partially due to the activation of its cell surface receptor, GPR109a. Based on the recent progress in understanding the mechanism and function of NAD+ and NAD+ precursors in cell metabolism, new strategies are evolving to exploit these molecules' pharmacological potential in the maintenance of metabolic balance.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Transdução de Sinais/fisiologia
16.
Aging Dis ; 13(2): 568-582, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35371607

RESUMO

Studies have shown that factors in the blood of young organisms can rejuvenate the old ones. Studies using heterochronic parabiosis models further reinforced the hypothesis that juvenile factors can rejuvenate aged systems. We sought to determine the effect of juvenile plasma-derived factors on the outcome following hemorrhagic shock injury in aged mice. We discovered that pre-pubertal (young) mice subjected to hemorrhagic shock survived for a prolonged period, in the absence of fluid resuscitation, compared to mature or aged mice. To further understand the mechanism of maturational dependence of injury resolution, extracellular vesicles isolated from the plasma of young mice were administered to aged mice subjected to hemorrhagic shock. The extracellular vesicle treatment prolonged life in the aged mice. The treatment resulted in reduced oxidative stress in the liver and in the circulation, along with an enhanced expression of the nuclear factor erythroid factor 2-related factor 2 (Nrf2) and its target genes, and a reduction in the expression of the transcription factor BTB and CNC homology 1 (Bach1). We propose that plasma factors in the juvenile mice have a reparative effect in the aged mice in injury resolution by modulating the Nrf2/Bach1 axis in the antioxidant response pathway.

17.
Free Radic Biol Med ; 188: 134-145, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691510

RESUMO

Sepsis is a complex disease due to dysregulated host response to infection. Oxidative stress and mitochondrial dysfunction leading to metabolic dysregulation are among the hallmarks of sepsis. The transcription factor NRF2 (Nuclear Factor E2-related factor2) is a master regulator of the oxidative stress response, and the NRF2 mediated antioxidant response is negatively regulated by BTB and CNC homology 1 (BACH1) protein. This study tested whether Bach1 deletion improves organ function and survival following polymicrobial sepsis induced by cecal ligation and puncture (CLP). We observed enhanced post-CLP survival in Bach1-/- mice with a concomitantly increased liver HO-1 expression, reduced liver injury and oxidative stress, and attenuated systemic and tissue inflammation. After sepsis induction, the liver mitochondrial function was better preserved in Bach1-/- mice. Furthermore, BACH1 deficiency improved liver and lung blood flow in septic mice, as measured by SPECT/CT. RNA-seq analysis identified 44 genes significantly altered in Bach1-/- mice after sepsis, including HMOX1 and several genes in lipid metabolism. Inhibiting HO-1 activity by Zinc Protoporphyrin-9 worsened organ function in Bach1-/- mice following sepsis. We demonstrate that mitochondrial bioenergetics, organ function, and survival following experimental sepsis were improved in Bach1-/- mice through the HO-1-dependent mechanism and conclude that BACH1 is a therapeutic target in sepsis.


Assuntos
Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2 , Sepse , Animais , Antioxidantes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Sepse/tratamento farmacológico , Sepse/genética
18.
Mol Med ; 17(5-6): 542-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21193900

RESUMO

Cardiac dysfunction and mortality associated with trauma and sepsis increase with age. Mitochondria play a critical role in the energy demand of cardiac muscles, and thereby on the function of the heart. Specific molecular pathways responsible for mitochondrial functional alterations after injury in relation to aging are largely unknown. To further investigate this, 6- and 22-month-old rats were subjected to trauma-hemorrhage (T-H) or sham operation and euthanized following resuscitation. Left ventricular tissue was profiled using our custom rodent mitochondrial gene chip (RoMitochip). Our experiments demonstrated a declined left ventricular performance and decreased alteration in mitochondrial gene expression with age following T-H and we have identified c-Myc, a pleotropic transcription factor, to be the most upregulated gene in 6- and 22-month-old rats after T-H. Following T-H, while 142 probe sets were altered significantly (39 up and 103 down) in 6-month-old rats, only 66 were altered (30 up and 36 down) in 22-month-old rats; 36 probe sets (11 up and 25 down) showed the same trend in both groups. The expression of c-Myc and cardiac death promoting gene Bnip3 were increased, and Pgc1-α and Ppar-α a decreased following T-H. Eleven tRNA transcripts on mtDNA were upregulated following T-H in the aged animals, compared with the sham group. Our observations suggest a c-myc-regulated mitochondrial dysfunction following T-H injury and marked decrease in age-dependent changes in the transcriptional profile of mitochondrial genes following T-H, possibly indicating cellular senescence. To our knowledge, this is the first report on mitochondrial gene expression profile following T-H in relation to aging.


Assuntos
Envelhecimento/metabolismo , Hemorragia/metabolismo , Hemorragia/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Envelhecimento/genética , Animais , Animais Recém-Nascidos , Western Blotting , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Feminino , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Gravidez , Ratos , Ratos Endogâmicos F344
19.
Toxicology ; 461: 152894, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34389359

RESUMO

Gulf War Illness (GWI) is estimated to have affected about one third of the Veterans who participated in the first Persian Gulf War. The symptoms of GWI include chronic neurologic impairments, chronic fatigue syndrome, as well as fibromyalgia and immune system disorders, collectively referred to as chronic multi-symptom illness. Thirty years after the war, we still do not have an effective treatment for GWI. It is necessary to understand the molecular basis of the symptoms of GWI in order to develop appropriate therapeutic strategies. Cellular energetics are critical to the maintenance of cellular homeostasis, a process that is highly dependent on intact mitochondrial function and there is significant evidence from both human studies and animal models that mitochondrial impairments may lead to GWI symptoms. The available clinical and pre-clinical data suggest that agents that improve mitochondrial function have the potential to restore cellular energetics and treat GWI. To date, the experiments conducted in animal models of GWI have mainly focused on neurobehavioral aspects of the illness. Additional studies to address the fundamental biological processes that trigger the dysregulation of cellular energetics in GWI are warranted to better understand the underlying pathology and to develop new treatment methods. This review highlights studies related to mitochondrial dysfunction observed in both GW veterans and in animal models of GWI.


Assuntos
Mitocôndrias/patologia , Síndrome do Golfo Pérsico/fisiopatologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Homeostase , Humanos , Síndrome do Golfo Pérsico/terapia , Veteranos
20.
Neurochem Int ; 150: 105192, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560175

RESUMO

Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Hemorragia Cerebral/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA